令和6年度(第38回) **労働衛生検査精度管理調査**

(生物学的モニタリング検査精度管理調査)

結果報告書

令和7年9月

(公社) 全国労働衛生団体連合会総合精度管理委員会 労働衛生検査専門委員会

はじめに

労働安全衛生法の規定により、事業者は労働者の健康診断を実施しなければならないが、多くの場合その実施は企業外の健康診断機関に委託されている。

健康診断には問診・診察、各種検査、採血・採尿、採取検体の運搬・保存・測定、健康診断結果の総合判定、さらには健康診断結果の事業者および受診者への報告と、多くのステップがあり、これらのステップで医師、看護師、診療放射線技師、臨床検査技師、医療事務担当者等多くの職種の人たちが関わっている。

健康診断の品質を良質なものとするためには、健康診断の各ステップにおいて精緻な管理が求められる。このため、一つひとつの検査が十分な精度管理のもとで実施されることが重要である。

公益社団法人全国労働衛生団体連合会(全衛連)では、総合精度管理事業として、労働衛生検査、臨床検査、胸部 X 線検査、胃 X 線検査、腹部超音波検査に関する精度管理調査を実施しているが、本報告書は令和 6 年度労働衛生検査に関する精度管理調査の実施結果をまとめたものである。

なお、労働衛生検査精度管理調査の実施細目は、「令和6年度労働衛生検査 精度管理調査実施要領」を参照されたい。

本事業を企画・運営・管理するために設置されている総合精度管理委員会および労働衛生検査専門委員会の委員は、次ページのとおりである。

【総合精度管理委員会】

委員 伊藤 春海 国立大学法人福井大学 名誉教授 岐阜大学 客員教授

同 入口 陽介 地方独立行政法人東京都立病院機構 東京都がん検診センター 所長

国立大学法人東北大学 名誉教授 東北大学大学院 医学系研究科同 大内 憲明

特任教授

同 岡庭 信司 飯田市立病院 診療技幹 内視鏡センター長

同 神村 裕子 公益社団法人日本医師会 常任理事

同 川本 俊弘 中央労働災害防止協会 労働衛生調査分析センター 所長

同 高木 康 昭和医科大学 名誉教授

同 福田 崇典 社会福祉法人 聖隷福祉事業団 理事 専務執行役員

【労働衛生検査専門委員会】

委 員 芦田 敏文 公益財団法人 神奈川県予防医学協会

同 市場 正良 国立大学法人佐賀大学医学部 社会医学講座環境医学分野 教授

同 上山 純 名古屋大学大学院医学系研究科総合保健学専攻 准教授

同 圓藤 陽子 圓藤労働衛生コンサルタント事務所

同 川澄 八重子 中央労働災害防止協会 化学物質調査分析課 技術専門役

同 川本 俊弘 中央労働災害防止協会 労働衛生調査分析センター 所長

同 竹内 靖人 中央労働災害防止協会 近畿・大阪安全衛生総合センター 労働衛生

検査室長

同 南部 裕里 労働衛生検査精度向上研究会 代表

同 山瀧 一 一般財団法人君津健康センター 理事 産業保健部長

目 次

I.	調査の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
II.	評価方法	7
III.	調査結果1(全体的評価結果)	23
IV.	. 調査結果 2 (個別的評価結果)	45
V.	尿中フェニルグリオキシル酸に係るプロセス調査結果	71
VI.	考察と指導コメント	83
VII	[. 集計結果 調査票 (その3)	95
VI	II. 総評	117
	参加施設一覧	121
	調査前送付文書	129

Ⅰ. 調査の概要

- 1. 参加施設
- 2. 調査項目および送付する試料について
- 3. 測定までのプロセスの調査
- 4. 測定値の報告
- 5. 参加施設数および項目別の自施設測定と外部委託の状況

報告書で使用されている略語一覧

血中鉛	Pb-B	ガスクロマトグラフ質量分析	GC-MS
	ALA	液体クロマトグラフ質量分析	LC-MS
	НА	ガスクロマトグラフ	GC
尿中メチル馬尿酸	MHA	液体クロマトグラフ	LC
尿中マンデル酸	НА	フレームレス原子吸光分析	FL-AAS
尿中総三塩化物	TTC	原子吸光分析	AAS
尿中トリクロロ酢酸	TCA	誘導結合プラズマ質量分析	ICP-MS
尿中 2,5 ヘキサンジオン	HD		
尿中 <i>N</i> -メチルホルムアミド	NMF		
尿中フェニルグリオキシル酸	PGA		

1. 参加施設

全衛連の労働衛生検査精度管理調査は、鉛、有機溶剤、特定化学物質(特別有機溶剤)に係る代謝物等の測定について、自施設に測定施設を併設している健康診断施設と測定を外部登録衛生検査所に委託している健康診断施設および検査専門の登録衛生検査所の参加を受け付けている。また、参加方法については1項目でも自施設で測定している施設(以下「A参加施設」という)と、自施設では測定を行わずに全ての代謝物の測定について外部登録衛生検査所に委託する施設(以下「B参加施設」という)に分けて外部精度管理調査を行っている。

2. 調査項目と送付する試料数および試料濃度のランダム配付について

検査精度の調査を目的に、下記表 I-1 に記載する調査対象 9 物質について 6 種類の濃度の異なる試料を作製し、合計 9 物質 6 濃度の合計 54 試料を A 参加施設に送付した。加えて A 参加施設には、測定プロセス調査試料としてフェニルグリオキシル酸人工尿 2 濃度 2 試料を送付した。

B参加施設にはプロセス調査用フェニルグリオキシル酸人工尿 2 濃度 2 試料のみを送付し、測定プロセスについて調査した。

なお、全衛連では、参加施設同士で同じ調査項目の同じ試料番号の試料濃度を比較することが困難となる仕様として、送付する1から6まで番号が振られた試料は、参加施設ごとに異なる濃度試料の並び順(ランダム配付)とした。プロセス調査の2試料はこの限りではない。

表 I-1 実施項目および試料数

()内は略称

対象物質	実 施 項 目		送付試料数
鉛	血中鉛量測定用	(P b)	6 試料
	尿中デルタアミノレブリン酸量測算	定用 (ALA)	6 試料
	尿中メチル馬尿酸量 (M	HA))
↑. \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	尿中馬尿酸量 (H.	A)	
有機溶剤	尿中マンデル酸量 (M	(A)	J
 特別	尿中総三塩化物量 (T	ΓC)	} 6 試料
有機溶剤	`	CA)) O 11-4/1-1
11//2/11/11	尿中 2,5 - ヘキサンジオン量 (H	D)	6 試料
	尿中 N -メチルホルムアミド量 (N	MF)	6 試料
	プロセス調査試料として		2 試料
	フェニルグリオキシル酸(PGA)量測	定用人工尿試料	Z #4/17

注)血中 Pb-B 測定用試料は牛血試料。PGA 他は人工尿試料。 HA・MHA・MA、TTC・TCA はそれぞれ混合試料である。

3. 測定までのプロセスの調査

 $A \cdot B$ 参加施設に対して、表 I - 1 記載のフェニルグリオキシル酸(PGA)量測定用人工尿試料と、プロセス調査のための付帯調査票「尿中フェニルグリオキシル酸 (PGA) 測定に関する調査票 (I)」・「尿中フェニルグリオキシル酸 (PGA) 受託測定に関する調査票 (II)」を送付した。

付帯調査票(I)により試料の受領、保管、測定委託先への試料授受状況を報告させ、また、測定をB参加施設から受託している施設に対しては、付帯調査票(II)により同様の報告をすることを求め、測定プロセスについて調査した。

4. 測定値の報告

精度管理参加施設からの調査試料測定値の報告については、次のとおりとした。

- (1) A 参加施設は、自施設で測定している項目は、自らの測定値を所定用紙に記入して報告する。ただし、外部登録衛生検査所に測定委託している項目については、自施設に送付された当該項目に係る試料を、通常測定委託している登録衛生検査所に送付し、測定をしてもらい、その測定結果を報告する。
- (2) B 参加施設は、自施設に送付された PGA 試料を、通常検査を委託している外部登録衛生検査所に送付して測定をしてもらい、その測定結果を報告する。 なお、PGA 以外の試料の測定値の報告は、必ず全衛連精度管理調査に参加しており、令和6年度の調査試料が全衛連から送られている登録衛生検査所であることを確認して、当該外部登録衛生検査所に送付された試料の測定結果を問い合わせ、その衛生検査所に送られた試料の測定値を全衛連に報告することとする。

5. 参加施設数および項目別の自施設測定と外部委託の状況

令和6年度の精度管理調査には322施設が参加し321施設の評価を行った。1施設は調査参加項目が2項目と少なく施設評価は行わなかった。測定値は参考値として報告書に掲載した。

参加施設の内訳は、A参加施設数が 29 施設で B 参加施設数が 293 施設の、全参加施設数で前回より 1 施設減であった。項目別の全参加施設数および、A 参加施設と B 参加施設の参加割合を表I-2 に示した。ここで注意していただきたいのは、A 参加施設であっても、項目により外部に測定委託を行っており、最終的に測定を行う登録衛生検査所(「受託施設」として記載)は、Pb-B、ALA、TTC、TCA、HD、NMF 項目で15 施設、MHA、HA、MA 項目は 16 施設となった。この様な 2 次委託の状況は前回実施結果と変わらずであった。なお、調査項目によって参加施設数が異なるのは参加施設から測定値の報告がなかったためであり、当該項目については調査不参加とし、評価は行っていない。

表 I-2 A 参加施設数と B 参加施設数

項目	日	報告数	%	A参加	%	B参加	%	受託施設
	第38回	321	99.7%	28	8.7%	293	91.0%	15
Pb-B	第37回	321	99.7%	29	9.0%	292	90.7%	15
	第36回	323	100%	28	8.7%	295	91.3%	15
	第38回	321	99.7%	28	8.7%	293	91.0%	15
ALA	第37回	321	99.7%	29	9.0%	292	90.7%	15
	第36回	323	100%	28	8.7%	295	91.3%	15
	第38回	322	100%	29	9.0%	293	91.0%	16
MHA	第37回	322	100%	30	9.3%	292	90.7%	16
	第36回	323	100%	28	8.7%	295	91.3%	16
	第38回	322	100%	29	9.0%	293	91.0%	16
HA	第37回	322	100%	30	9.3%	292	90.7%	16
	第36回	323	100%	28	8.7%	295	91.3%	16
	第38回	321	99.7%	28	8.7%	293	91.0%	16
MA	第36回	321	99.7%	29	9.0%	292	90.7%	16
	第35回	321	99.7%	29	9.0%	292	90.7%	16
	第38回	319	99.1%	26	8.1%	293	91.0%	15
TTC	第37回	321	99.7%	29	9.0%	292	90.7%	15
	第36回	323	100%	28	8.7%	295	91.3%	15
	第38回	318	98.8%	26	8.1%	292	90.7%	15
TCA	第37回	317	98.4%	26	8.1%	291	90.4%	15
	第37回	317	98.4%	26	8.1%	291	90.4%	15
	第38回	321	99.7%	28	8.7%	293	91.0%	15
HD	第37回	323	100%	28	8.7%	295	91.3%	15
	第37回	329	100%	31	9.4%	298	90.6%	15
	第38回	321	99.7%	28	8.7%	293	91.0%	15
NMF	第37回	321	99.7%	29	9.0%	292	90.7%	15
	第37回	321	99.7%	29	9.0%	292	90.7%	15

注1 各項目の%は、項目毎の参加施設数を分母としている。 注2 受託施設とは、A参加施設から測定委託された施設で調査に参加していない施設もある。 注3 NMFでは、第35回より本調査項目に採用し6試料を送付している。

Ⅱ. 評価方法

- 1. 本調査の試料濃度の決定と方法
- 2. 解析値評価および許容範囲評価と配点
- 3. 解析値評価の解説
- 4. 測定値に対する点数評価
- 5. 総合評価

1. 本調査の試料濃度の決定と方法

本調査の評価の基本となる試料濃度 X_i の決定は、個々の測定値 Y_i が許容される範囲に収まっているかどうか(許容範囲を決める試料濃度と標準偏差)を考慮し決定した。i は検体番号 $1\sim6$ を示す。

まず各測定項目について、濃度の同じ試料ごとに直接参加施設 n(1)から報告された測定値 Yi を累計し、平均値 $\overline{\chi}(1)$ に対する標準偏差 SD(1)を求めた。次いで $\overline{\chi}(1)$ ±2SD を超える測定値 Yi を外れ値として集計から除外し、 $\overline{\chi}(1)$ ±2SD の範囲内にある施設 n(2) による測定値 Yi より、あらためて平均値 $\overline{\chi}(2)$ と標準偏差 SD(2)を計算し、この平均値 $\overline{\chi}(2)$ を測定値に対する評価に際しての基準となる試料濃度 Xi とした。これらの項目別の数値を、表 II-1 に示した.

平均: $\overline{\chi} = \frac{1}{n} \sum Y_i$ 標準偏差: $SD = \frac{1}{n} \sqrt{\sum (Y_i - \overline{\chi})^2}$

表 II・1 項目別集計件数、平均値および標準偏差(自施設検査施設)

	項目		試料1	試料2	試料3	試料4	試料5	試料6
Pb-B	n (1)	件数	28	28	28	28	28	28
μ g/d L	x (1)	平均値	7.2	14.2	22.9	31.7	39.9	44.0
	SD(1)	標準偏差	0.38	0.53	0.69	1.01	1.14	1.21
	n (2)	件数	27	27	25	26	26	27
	x (2)	平均値	7.3	14.1	22.8	31.5	40.0	43.9
	SD(2)	標準偏差	0.28	0.48	0.46	0.84	0.80	1.07
ALA	n (1)	件数	28	28	28	28	28	28
mg/L	x (1)	平均値	1.9	3.7	5.8	7.8	10.5	12.2
	SD(1)	標準偏差	0.08	0.13	0.20	0.24	0.35	0.34
	n (2)	件数	27	27	26	26	27	26
	x (2)	平均値	1.9	3.7	5.9	7.9	10.5	12.3
	SD(2)	標準偏差	0.06	0.10	0.14	0.13	0.31	0.23
MHA	n (1)	件数	29	29	29	29	29	29
g/L	x (1)	平均値	0.52	0.85	1.02	1.46	1.77	1.83
	SD(1)	標準偏差	0.01	0.02	0.03	0.03	0.03	0.03
	n (2)	件数	28	27	27	28	29	29
	x (2)	平均値	0.52	0.85	1.02	1.46	1.77	1.83
	SD(2)	標準偏差	0.01	0.02	0.02	0.03	0.03	0.03
HA	n (1)	件数	29	29	29	29	29	29
g/L	x (1)	平均値	0.48	0.81	1.13	1.79	2.20	2.90
	SD(1)	標準偏差	0.01	0.02	0.03	0.04	0.05	0.06
	n (2)	件数	25	27	27	28	28	27
	x (2)	平均値	0.48	0.81	1.12	1.78	2.19	2.89
	SD(2)	標準偏差	0.01	0.02	0.03	0.03	0.04	0.04

MA	n (1)	件数	28	28	28	28	28	28
g/L	x (1)	平均値	0.18	0.26	0.37	0.55	0.77	1.19
	SD(1)	標準偏差	0.01	0.01	0.01	0.01	0.01	0.02
	n (2)	件数	28	28	28	28	25	28
	x (2)	平均値	0.18	0.26	0.37	0.55	0.77	1.19
	SD(2)	標準偏差	0.01	0.01	0.01	0.01	0.01	0.02
TTC	n (1)	件数	26	26	26	26	26	26
mg/L	x (1)	平均値	2.8	10.1	27.2	54.7	84.4	122.4
	SD(1)	標準偏差	0.12	0.26	0.67	1.22	1.86	3.48
	n (2)	件数	25	26	24	25	25	25
	x (2)	平均値	2.8	10.1	27.2	54.8	84.7	122.7
	SD(2)	標準偏差	0.11	0.26	0.56	1.11	1.43	3.16
TCA	n (1)	件数	26	26	26	26	26	26
mg/L	x (1)	平均値	1.7	4.4	8.7	13.4	29.2	40.8
	SD(1)	標準偏差	0.08	0.16	0.20	0.46	0.81	1.08
	n (2)	件数	26	24	26	24	25	25
	x (2)	平均値	1.7	4.4	8.7	13.5	29.2	40.7
	SD(2)	標準偏差	0.08	0.11	0.20	0.36	0.75	0.96
HD	n (1)	件数	28	28	28	28	28	28
mg/L	x (1)	平均値	1.1	1.7	2.2	3.4	5.1	5.6
	SD(1)	標準偏差	0.06	0.10	0.13	0.16	0.26	0.24
	n (2)	件数	26	27	26	26	26	26
	x (2)	平均値	1.1	1.7	2.2	3.3	5.0	5.6
	SD(2)	標準偏差	0.03	0.08	0.08	0.08	0.14	0.13
NMF	n (1)	件数	28	28	28	28	28	28
mg/L	x (1)	平均値	4.8	9.5	14.5	29.0	38.7	48.7
-		標準偏差	0.25	0.65	0.88	1.40	1.96	1.86
	n (2)	件数	28	28	27	27	27	27
	x (2)	平均值	4.8	9.5	14.4	28.8	38.4	48.4
	SD(2)	標準偏差	0.25	0.65	0.81	1.13	1.60	1.38

2. 解析値評価および許容範囲評価と配点

評価は参加施設から報告されたすべての測定結果を項目別にまとめ、次の方法により評価し配点した。配布した試料濃度を X_i ,各施設の測定値を Y_i とする。iは検体 $1\sim6$ を示す。

(1) 解析值評価

各施設の測定結果(6 試料) Y_i について項目別に、試料濃度 X_i に対する次の 5 種類の計算を行った。配点は、回収率 b、再現性 $\sqrt{V_E}$ 、測定値のばらつき $\tan\theta$ についてはそれぞれ満点を 6 点とし、真度: 試料濃度との差 PI-1、真度: 試料濃度との比 PI-2 については満点を 4 点とした。(小計 26 点)

- a《回 収 率》回帰係数 Y = a + bX の b: 測定値は平均的に高いか低いか: 6 点
- \mathbf{b} 《再 現 性》回帰直線からのずれ($\sqrt{V_E}$): 繰返し測定の再現性: $\mathbf{6}$ 点
- c《測定値のばらつき》測定値を含む確率楕円の長軸の傾きの正切(tanθ):回帰係数 bに近い値:6点
- d《真度: 試料濃度との差》パフォーマンス・インデックス 1 (PI-1): 大きい値の誤差: 4 点
- e 《真度: 試料濃度との比》パフォーマンス・インデックス 2 (PI-2): 小さい値の誤 差: 4 点

(2) 許容範囲評価

各施設の全測定結果(6 試料)について個々の測定値 Y_i が許容される範囲内に納まっているかどうかを評価した。配点は各試料 4 点を満点とした。(小計 24 点 (6×4))表 II-8 参照。

上記(1)・(2)より解析値評価および許容範囲評価の合計点は50点満点となる。

3. 解析値評価の解説

(1) 回収率:回帰直線式 Y=a+bX の回帰係数 b

参加施設の測定値が試料濃度と比べて乖離している程度を評価するために、試料濃度と測定値の回帰直線を利用しその傾きで評価している。

試料濃度 X_i と参加施設の測定値 Y_i の 6 組の変数から、回帰直線 Y=a+bX を求める。測定値 Y_i が全て試料濃度 X_i と一致した場合には回帰式は Y=1.00X となるが、実際には試料濃度 X_i と測定値 Y_i の間に差があるため、Y=a+bX という形になる。この回帰係数 b によって比例系統誤差(濃度に関係なく一定比率で生じている誤差)を推定できる。そこで、b を回収率として評価すると、b が 1.00 に近いほど評価点が高くなる。一方、回帰直線が Y 軸と交わる切片 a によって一定系統誤差(濃度に関係なく一定の大きさで生じる誤差)が推定でき、a の値が 0 から大きくずれていると、測定値に一定の大きさでかたよりが生じている事になるので、a でも評価できる。しかし、測定値に対する評価を試料ごとに行っているので、a については評価項目として取り上げていない。

評価点を満点で6点とし、表Ⅱ-2のように評価の範囲を決めた。

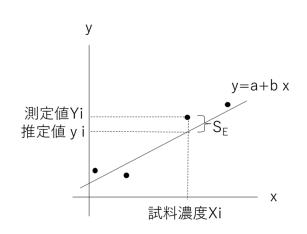

評価点	b の 範 囲
6 点	$0.95 \leq b \leq 1.05$
5 点	$0.90 \leq \mathrm{b} < 0.95$, $1.05 < \mathrm{b} \leq 1.10$
4 点	$0.85 \leq \mathrm{b} < 0.90$, $1.10 < \mathrm{b} \leq 1.15$
3 点	$0.75 \leq \mathrm{b} < 0.85$, $1.15 < \mathrm{b} \leq 1.25$
2 点	$0.65 \leq \mathrm{b} < 0.75$, $1.25 < \mathrm{b} \leq 1.35$
1 点	$0.50 \leq \mathrm{b} < 0.65$, $1.35 < \mathrm{b} \leq 1.50$
0 点	b < 0.50, $1.50 < b$

表 II-2 回収率 (b) に対する評価点の範囲

(2) 再現性:回帰直線からのずれ $\sqrt{V_E}$

参加施設の測定の再現性を評価するため、前述の(1)回収率で求めた回帰直線からの測定値のばらつきを評価している。図に示すように各測定値 Y_i (\blacksquare) は回帰直線から上下にずれがある(回帰からの変動 S_E)。回帰直線から各測定値 Y_i のずれを再現性 ($\sqrt{V_E}$) とした。この値が小さいほど評価点が高くなる。

回帰からの変動 S_E は、回帰式から X_i における推定値 y_i を使い次式により求めることができる

$S_E = \Sigma (Y_i - v_i)^2 v_i$:回帰式からの推定値

この S_E を自由度 (n-2) で割ったものの平方根を再現性 $\sqrt{V_E}$ としたが、これは回帰直線からの標準偏差ともいわれるものである。 $\sqrt{V_E}$ が小さければ評価点は良くなる。この値は平均値の値によっても変わることから、各試料濃度を X_i とした場合、できるだけ同じ条件で評価できるようにするため、 $\sqrt{V_E}$ の評価に当っては $\sqrt{\frac{1}{n}\Sigma X_i^2}$ (平方平均, 二乗平均平方根) に定数を掛けた数値を区切り値とした。平方平均は,散らばりを考慮した平均値となる。なお、定数は表 Π -3-1 に示すとおりであり、過去のクロスチェック結果をもとに決めた。表 Π -3-2 に $\sqrt{\frac{1}{n}\Sigma X_i^2}$ に定数を掛けた評価点範囲を示す。平均値に対する標準偏差の割合を評価している。満点は 6 点とした。

表Ⅱ-3-1	$\sqrt{V_E}$	の評価点区切り	を算出するための	$\sqrt{1/n\Sigma\chi_i^2}$ に掛ける定数
--------	--------------	---------	----------	-----------------------------------

項目	6~5 点 区切り	5~4 点 区切り	4~3 点 区切り	3~2 点 区切り	2~1 点 区切り	1~0 点 区切り
Pb-B, ALA	0.030	0.060	0.090	0.130	0.170	0.225
MHA, HA,MA, HD,NMF	0.020	0.040	0.060	0.095	0.130	0.180
TTC, TCA	0.020	0.030	0.040	0.065	0.090	0.120

表II-3-2 $\sqrt{V_E}$ に対する評価点の範囲

	Pb-B	ALA	MHA	НА	MA	TTC	TCA	HD	NMF
$\sqrt{\frac{1}{n}\sum X_i^2}$	29.7	7.9	1.3	1.8	0.7	65.9	21.6	3.6	28.8
6 点	\leq 0.891	≦ 0.237	≦0.026	≦0.036	≦0.014	≦1.318	≦ 0.432	≦ 0.072	≦0.576
5 点	≦1.782	≦0.474	≦0.052	≦0.072	≦0.028	≦1.977	≦0.648	≦0.144	≦1.152
4 点	≤ 2.673	≦0.711	≦0.078	≦0.108	≦0.042	≦2.636	≦0.864	≦0.216	≦1.728
3 点	≤ 3.861	≦ 1.027	≦0.124	≦0.171	≦0.067	≦ 4.284	≦1.404	≦ 0.342	≦2.736
2 点	≤ 5.049	≦1.343	≦0.169	≦ 0.234	≦0.091	≦ 5.931	≦1.944	≦0.468	≦3.744
1 点	\leq 6.683	≦1.778	≦0.234	≦0.324	≦0.126	≦ 7.908	≦2.592	≦0.648	≦5.184
0 点	>6.683	>1.778	>0.234	>0.324	>0.126	>7.909	> 2.592	>0.648	>5.184

(3) 測定値のばらつき:確率楕円の長軸の傾き角の正切 tanθ 測定値 Yi のばらつきを、その分布領域の形で評価している。

試料濃度 X_i , 測定値 Y_i のグラフ上のプロット点は、回帰直線の両側にばらついているので、それらのプロット点を含む確率楕円を求めることができる。理想的な場合には、この確率楕円のふくらみはなくなり、回帰直線と一致する。しかし、試料濃度 X_i と測定値 Y_i のずれが大きくなると、このふくらみは大きくなり、さらに楕円の長軸の方向も回帰直線の方向から離れてくる。したがって、この確率楕円の長軸の傾き角によって測定のばらつきを知ることができる。以下の式(土屋、杉田、桜井、産業医学 20:247-253, 1978) を用いて、長軸の傾き角の正切($tan\theta$)によってばらつきを調べている。

$$tan\theta = \frac{-(\sigma^2x - \sigma^2y) + \sqrt{(\sigma^2x - \sigma^2y)^2 + 4\sigma^2xy}}{2\sigma xy}$$

 $\sigma^2 x$ 、 $\sigma^2 y$: 試料濃度 X_i 、測定値 Y_i の分散、 $\sigma x y$: 試料濃度 X_i 、測定値 Y_i の共分散

 $\tan\theta$ による評価は、回帰係数 b と同様、 $\tan\theta=1.00$ 、 $\theta=45^{\circ}$ を中心に、表 II-4 に示すように満点を 6 点として評価点の範囲を設定した。

ほとんどの場合、 $\tan\theta$ は回収率 b に一致しているが、 $\sqrt{V_E}$ の値が大きいほど、2 つの間の差は大きくなるので、これら両者で評価している。

評価点	θ の 範 囲	tanθの範囲
6 点	$43.0^{\circ} \leq \theta \leq 47.0^{\circ}$	$0.932 \leq \tan\theta \leq 1.072$
5 点	$41.0^{\circ} \le \theta < 43.0^{\circ}$ $47.0^{\circ} < \theta \le 49.0^{\circ}$	$0.869 \le \tan \theta < 0.933$ $1.072 < \tan \theta \le 1.150$
4 点	$39.0^{\circ} \le \theta < 41.0^{\circ}$ $49.0^{\circ} < \theta \le 51.0^{\circ}$	$0.810 \le \tan\theta \le 0.869$ $1.150 < \tan\theta \le 1.235$
3 点	$36.0^{\circ} \le \theta < 39.0^{\circ}$ $51.0^{\circ} < \theta \le 54.0^{\circ}$	$0.727 \le \tan\theta < 0.810$ $1.235 < \tan\theta \le 1.376$
2 点	$33.0^{\circ} \le \theta < 36.0^{\circ}$ $54.0^{\circ} < \theta \le 57.0^{\circ}$	$0.649 \le an heta < 0.727 \ 1.376 < an heta \le 1.540$
1 点	$27.5^{\circ} \le \theta < 33.0^{\circ} 57.0^{\circ} < \theta \le 62.5^{\circ}$	$0.521 \le an heta < 0.649 \ 1.540 < an heta \le 1.921$
0 点	$egin{array}{c} heta < 27.5^{ ext{o}} \ 62.5^{ ext{o}} < heta \end{array}$	$ an heta < 0.521 \ 1.921 < an heta$

表 II-4 tanθ に対する評価点の範囲

(4) 真度: パフォーマンス・インデックス PI-1.2

測定値と試料濃度の差の大きさ(誤差)を評価しているが、各試料での差の合計か、 各試料での差の比率の平均かで2つの計算を使用している。

パフォーマンス・インデックス(PI) は、誤差(試料濃度 X_i と測定値 Y_i の差)の評価であり、次の2つの計算式から求める。PI-1は試料濃度 X_i と測定値 Y_i との差,PI-2は試料濃度 X_i と誤差との比を重視している。

$$PI - 1 = \frac{\sum |Y_i - X_i|}{\sum X_i}$$

$$PI - 2 = \frac{1}{n} \sum \frac{|Y_i - X_i|}{X_i}$$

PI-1 は、各測定項目の 6 試料全部の誤差の絶対値の合計と試料濃度 X_i の合計との比であり、PI-2 は各試料の試料濃度 X_i と誤差との比と求め、6 試料の平均を求めたものである。

各試料の誤差が同程度であれば、いずれの PI もほぼ同じ値になるが、誤差が低濃度から高濃度まで広い範囲にばらついている場合には、PI-1 と PI-2 の間には、差が生じることがある。計算方法の違いから、PI-1 は高濃度試料の誤差の影響が大きく、 PI-2 は低濃度試料の誤差の影響が大きくなる。

例: 試料濃度が0.1, 10 で、測定値0.2, 11 の時、誤差は0.1, 1 となり、PI-1=(0.1+1)/(0.1+10)=1.1/10.1 PI-2=0.1/0.1+1/10=1+0.1

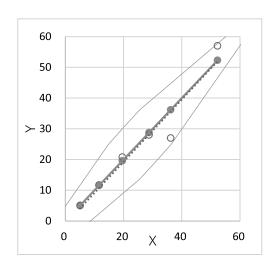
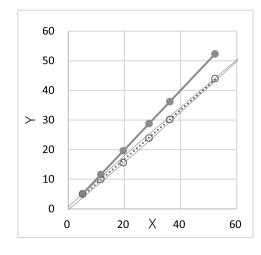

PI 値が小さい程、評価点は高くなり、PI の値が 0.1 以下であれば、信頼度(真度)が高いと考えて良い。PI-1 および PI-2 による評価点は、満点を各 4 点とし、表 II - 5 のとおりである。

表 II-5 PI-1 及び PI-2 に対する評価点の範囲

評価点	Pb-B	ALA、MHA、HA、MA、 TTC、TCA, HD、NMF
4 点	PI≦0.075	PI≦0.050
3 点	$0.075 < PI \le 0.150$	$0.050 < PI \le 0.100$
2 点	$0.150 < PI \le 0.225$	0.100 <pi≦0.150< td=""></pi≦0.150<>
1点	$0.225 < PI \le 0.300$	$0.150 < PI \le 0.200$
0 点	0.300 <pi< td=""><td>0.200<pi< td=""></pi<></td></pi<>	0.200 <pi< td=""></pi<>

(5) 評価例

評価の実例を示す。Y=X (実線) と測定結果 (破線) の回帰直線, 確率楕円を示す。 回収率, tanθ, PI は正確度を, 再現性は精密度を示す。



回収率 6 再現性 1 tanθ 6 PI-1 2 PI-2 3

試料 5,6 で値にずれがあるが、回帰式の傾きは問題ないので回収率は 6 点となる。しかし、再現性は低評価となる。

確率楕円の幅は大きくなるが、傾きは問題ないので $tan\theta$ は 6 点となる。

高濃度検体で外れるので、PI-1 の方が低評価となる。

回収率 3 再現性 6 $\tan\theta$ 4 PI-1 1 PI-2 2

傾きは低いので回収率は低評価だが、回帰直線からのばらつきはないので再現性は6点となる。確率楕円は幅は狭いが、傾きが低評価。

高濃度検体で外れるので, PI-1 の方が低評価となる。

標準液に問題があることがわかる。

以上の計算は、分析者自身で行うことができる。エクセルを使用した具体的な計算方法を労働衛生管理 36 (2)、55·63、2025 に示す。参照されたい。

4. 測定値に対する点数評価

「鉛および有機溶剤健康診断結果報告のための分布区分」表II-6 と「特定化学物質 (特別有機溶剤)健康診断結果報告のための全衛連が定めた管理暫定値」表II-7 に基づいて各試料の試料濃度に対する許容範囲と許容範囲に対応する評価点を決定し、これを基準として測定値を評価した。鉛と有機溶剤の検査項目での試料濃度に対する許容範囲については、低濃度(分布 1)と高濃度(分布 3)の試料に対して分布 2 との境界値の±10%という絶対的許容範囲を決定し、中濃度(分布 2)の試料に対しては、試料濃度の±10%という相対的許容範囲を決定した。特別有機溶剤については、全衛連が定めた管理暫定値以下の濃度と本委員会が定めた値を超える濃度の試料に対しては暫定値および本委員会の定めた値の±10%という絶対的許容範囲を決定し、その間の濃度の試料に対しては試料濃度の±10%という相対的許容範囲を決定した。

表Ⅱ-6 鉛および有機溶剤健康診断結果報告のための分布区分

対象物質と測定代謝物質	記号	分布 1	分布 2	分布 3
鉛 血液中の鉛の量 尿中のデルタアミノレブリン酸の量	Pb-B ALA	20μg/dL 以下 5 mg/L 以下	20μg/dL 超 40μg/dL 以下 5 mg/L 超 10 mg/L 以下	40µg/dL 超 10mg/L 超
キシレン 尿中のメチル馬尿酸の量	МНА	0.5 g/L 以下	0.5 g/L 超 1.5 g/L 以下	1.5 g/L 超
トルエン 尿中の馬尿酸	НА	1 g/L 以下	1 g/L 超 2.5 g/L 以下	2.5 g/L 超
ノルマルヘキサン 尿中の 2,5-^キサンジオン゙の量	HD	2 mg/L 以下	2 mg/L 超 5 mg/L 以下	5 mg/L 超
1,1,1-トリクロロエタン 尿中のトリクロロ酢酸 尿中の総三塩化物	TTC TCA	10 mg/L 以下 3 mg/L 以下	10 mg/L 超 40 mg/L 以下 3 mg/L 超 10 mg/L 以下	40 mg/L 超 10 mg/L 超
<i>N,N</i> -ジメチルホルムアミド 尿中 <i>N</i> -メチルホルムアミド	NMF	10 mg/L 以下	10 mg/L 超 40 mg/L 以下	40 mg/L 超

表 II-7 特定化学物質(特別有機溶剤)健康診断結果報告のための全衛連が定めた管理暫定値

		_
対象物質と測定代謝物質	記号	全衛連が定めた管理暫定値
エチルベンゼン 尿中のマンデル酸の量	MA	300mg/L
スチレン 尿中のマンデル酸の量	MA	300mg/L
テトラクロロエチレン 尿中のトリクロロ酢酸 尿中の総三塩化物	TTC TCA	3 mg/L 3 mg/L
トリクロロエチレン 尿中のトリクロロ酢酸 尿中の総三塩化物	TTC TCA	100 mg/L 30 mg/L

表Ⅱ-8-1 試料濃度に対する許容範囲1

我用 6 1 時待依反に対する	分布区分	分布 1	分布 2	分布 3
試 料 	評価点	絶対値	相対値	絶対値
血液中の鉛の量	点数 4 点	±2.0 以内	試料濃度の±10%以内	±4.0 以内
	点数 3 点	±3.0 以内	試料濃度の±15%以内	±6.0 以内
Pb-B μg/dL	点数 2点	±4.0 以内	試料濃度の±20%以内	±8.0 以内
	点数 1点	±4.0 超	試料濃度の±20%超	±8.0 超
尿中のデルタアミノレブリン酸の量	点数 4点	±0.5 以内	試料濃度の±10%以内	±1.0 以内
	点数 3 点	±0.75 以内	試料濃度の±15%以内	±1.5 以内
ALA mg/L	点数 2点	±1.0 以内	試料濃度の±20%以内	±2.0 以内
	点数 1点	±1.0 超	試料濃度の±20%超	±2.0 超
尿中のメチル馬尿酸の量	点数 4点	±0.05 以内	試料濃度の±10%以内	±0.15 以内
	点数 3 点	±0.075 以内	試料濃度の±15%以内	±0.225 以内
MHA g/L	点数 2点	±0.1 以内	試料濃度の±20%以内	±0.3 以内
	点数 1点	±0.1 超	試料濃度の±20%超	±0.3 超
尿中の馬尿酸の量	点数 4点	±0.10 以内	試料濃度の±10%以内	±0.25 以内
	点数 3 点	±0.15 以内	試料濃度の±15%以内	±0.375 以内
HA g/L	点数 2点	±0.20 以内	試料濃度の±20%以内	±0.50 以内
	点数 1 点	±0.20 超	試料濃度の±20%超	±0.50 超
尿中の 2,5-ヘキサンジオンの量	点数 4点	±0.2 以内	試料濃度の±10%以内	±0.5 以内
	点数 3 点	±0.3 以内	試料濃度の±15%以内	±0.75 以内
HD mg/L	点数 2点	±0.4 以内	試料濃度の±20%以内	±1.0 以内
	点数 1点	±0.4 超	試料濃度の±20%超	±1.0 超
尿中の N-メチルホルムアミドの量	点数 4 点	±1.0 以内	試料濃度の±10%以内	±4.0 以内
	点数 3 点	±1.5 以内	試料濃度の±15%以内	±6.0 以内
NMF mg/L	点数 2点	±2.0 以内	試料濃度の±20%以内	±8.0 以内
	点数 1点	±2.0 超	試料濃度の±20%超	±8.0 超

表Ⅱ-8-2 試料濃度に対する許容範囲2

試 料	分布区分	0.3g/L 以下	0.3g/L 超 1.0 g/L 以下	1.0 g/L 超
計 料 	評価点	絶対値	相対値	絶対値
尿中のマンデル酸の量	点数 4 点	±0.03 以内	試料濃度の±10%以内	±0.1 以内
	点数 3 点	±0.045 以内	試料濃度の±15%以内	±0.15 以内
MA g/l	点数 2点	±0.06 以内	試料濃度の±20%以内	±0.2 以内
	点数 1点	±0.06 超	試料濃度の±20%超	±0.2 超

表Ⅱ-8-3 試料濃度に対する許容範囲3

試 料	分布区分	3 mg/L 以下	3 mg/L 超 30 mg/L 以下	30 mg/L 超
試 料 	評価点	絶対値	相対値	絶対値
尿中のトリクロロ酢酸の	点数 4点	±0.3 以内	試料濃度の±10%以内	±3.0 以内
	点数 3 点	±0.45 以内	試料濃度の±15%以内	±4.5 以内
TCA mg/L	点数 2点	±0.6 以内	試料濃度の±20%以内	±6.0 以内
	点数 1点	±0.6 超	試料濃度の±20%超	±6.0 超

表Ⅱ-8-4 試料濃度に対する許容範囲 4

試 料	分布区分	3 mg/L 以下	3 mg /L 超 100 mg/L 以下	100 mg/L 超
nick 1/4	評価点	絶対値	相対値	絶対値
尿中の総三塩化物の量	点数 4 点	±0.3 以内	試料濃度の±10%以内	±10 以内
	点数 3 点	±0.45 以内	試料濃度の±15%以内	±15 以内
TTC mg/L	点数 2点	±0.6 以内	試料濃度の±20%以内	±20 以内
	点数 1点	±0.6 超	試料濃度の±20%超	±20 超

令和 6 年度に実施された本調査において、基準となった各調査試料濃度及び表 II -8-1 から表 II -8-4 に示された許容範囲ごとに対応する評価点の一覧表を表II-9 に示す。

表Ⅱ-9 試料の評価点と濃度範囲

表Ⅱ-9	· · · · · ·)評価点と濃					
項目	点数	試料-1	試料-2	試料-3	試料-4	試料-5	試料-6
Pb-B	試料濃度	7.3 μ g/dL	14.1 μ g/dL	22.8 μ g/dL	31.5 μ g/dL	40.0 μ g/dL	43.9 μ g/dL
μg/dL	4点	±2.0 μ g/dL以内	±2.0 μ g/dL以内	±2.2 μ g/dL以内	±3.1 μ g/dL以内	±4.0 μ g/dL以内	±4.0 μ g/dL以内
<i>r</i>	3点	±3.0 μ g/dL以内	±3.0 μ g/dL以内	±3.4 μ g/dL以内	±4.7 μ g/dL以内	±6.0 μ g/dL以内	±6.0 μ g/dL以内
	2点	±4.0 μ g/dL以内	±4.0 μ g/dL以内	±4.5 μ g/dL以内	±6.3 μ g/dL以内	±8.0 μ g/dL以内	±8.0 μ g/dL以内
	1点	±4.0 μ g/dL超	±4.0 μ g/dL超	±4.5 μ g/dL超	±6.3 μ g/dL超	±8.0 μ g/dL超	±8.0 μ g/dL超
	試料濃度	1.9mg/L	3.7mg/L	5.9mg/L	7.9mg/L	10.5mg/L	12.3mg/L
ALA	4点	±0.5mg/L以内	±0.5mg/L以内	±0.5mg/L以内	±0.7mg/L以内	±1.0mg/L以内	±1.0mg/L以内
mg/L	3点	±0.75mg/L以内	±0.75mg/L以内	±0.8mg/L以内	±1.1mg/L以内	±1.5mg/L以内	±1.5mg/L以内
Ü	2点	±1.0mg/L以内	±1.0mg/L以内	±1.1mg/L以内	±1.5mg/L以内	±2.0mg/L以内	±2.0mg/L以内
	1点	±1.0mg/L超	±1.0mg/L超	±1.1mg/L超	±1.5mg/L超	±2.0mg/L超	±2.0mg/L超
	試料濃度	0.52g/L	0.85g/L	1.02g/L	1.46g/L	1.77g/L	1.83g/L
MHA	4点	±0.05g/L以内	±0.08g/L以内	±0.10g/L以内	±0.14g/L以内	±0.15g/L以内	±0.15g/L以内
g/L	3点	±0.07g/L以内	±0.12g/L以内	±0.15g/L以内	±0.21g/L以内	±0.225g/L以内	±0.225g/L以内
Ü	2点	±0.10g/L以内	±0.17g/L以内	±0.20g/L以内	±0.29g/L以内	±0.3g/L以内	±0.3g/L以内
	1点	±0.10g/L超	±0.17g/L超	±0.20g/L超	±0.29g/L超	±0.3g/L超	±0.3g/L超
	試料濃度	0.48g/L	0.81g/L	1.12g/L	1.78g/L	2.19g/L	2.89g/L
TTA	4点	±0.10g/L以内	±0.10g/L以内	±0.11g/L以内	±0.17g/L以内	±0.21g/L以内	±0.25g/L以内
HA g/ L	3点	±0.15g/L以内	±0.15g/L以内	±0.16g/L以内	±0.26g/L以内	±0.32g/L以内	±0.375g/L以内
8, 2	2点	±0.20g/L以内	±0.20g/L以内	±0.22g/L以内	±0.35g/L以内	±0.43g/L以内	±0.50g/L以内
	1点	±0.20g/L超	±0.20g/L超	±0.22g/L超	±0.35g/L超	±0.43g/L超	±0.50g/L超
	試料濃度	0.18g/L	0.26g/L	0.37g/L	0.55g/L	0.77g/L	1.19g/L
MA	4点	±0.03g/L以内	±0.03g/L以内	±0.03g/L以内	±0.05g/L以内	±0.07g/L以内	±0.1g/L以内
g/L	3点	±0.045g/L以内	±0.045g/L以内	±0.05g/L以内	±0.08g/L以内	±0.11g/L以内	±0.15g/L以内
o .	2点	±0.06g/L以内	±0.06g/L以内	±0.07g/L以内	±0.11g/L以内	±0.15g/L以内	±0.2g/L以内
	1点	±0.06g/L超	±0.06g/L超	±0.07g/L超	±0.11g/L超	±0.15g/L超	±0.2g/L超
	試料濃度	2.8mg/L	10.1mg/L	27.2mg/L	54.8mg/L	84.7mg/L	122.7mg/L
TTT-C	4点	±0.3mg/L以内	±1.0mg/L以内	±2.7mg/L以内	±5.4mg/L以内	±8.4mg/L以内	±10mg/L以内
TTC mg/L	3点	±0.45mg/L以内	±1.5mg/L以内	±4.0mg/L以内	±8.2mg/L以内	±12.7mg/L以内	±15mg/L以内
	2点	±0.6mg/L以内	±2.0mg/L以内	±5.4mg/L以内	±10.9mg/L以内	±16.9mg/L以内	±20mg/L以内
	1点	±0.6mg/L超	±2.0mg/L超	±5.4mg/L超	±10.9mg/L超	±16.9mg/L超	±20mg/L超
	試料濃度	1.7mg/L	4.4mg/L	8.7mg/L	13.5mg/L	29.2mg/L	40.7mg/L
TCA	4点	±0.3mg/L以内	±0.4mg/L以内	±0.8mg/L以内	±1.3mg/L以内	±2.9mg/L以内	±3.0mg/L以内
TCA mg/L	3点	±0.45mg/L以内	±0.6mg/L以内	±1.3mg/L以内	±2.0mg/L以内	±4.3mg/L以内	±4.5mg/L以内
o	2点	±0.6mg/L以内	±0.8mg/L以内	±1.7mg/L以内	±2.7mg/L以内	±5.8mg/L以内	±6.0mg/L以内
	1点	±0.6mg/L超	±0.8mg/L超	±1.7mg/L超	±2.7mg/L超	±5.8mg/L超	±6.0mg/L超
	試料濃度	1.1mg/L	1.7mg/L	2.2mg/L	3.3mg/L	5.0mg/L	5.6mg/L
ш	4点	±0.2mg/L以内	±0.2mg/L以内	±0.2mg/L以内	±0.3mg/L以内	±0.5mg/L以内	±0.5mg/L以内
HD mg/L	3点	±0.3mg/L以内	±0.3mg/L以内	±0.3mg/L以内	±0.4mg/L以内	±0.7mg/L以内	±0.75mg/L以内
o -	2点	±0.4mg/L以内	±0.4mg/L以内	±0.4mg/L以内	±0.6mg/L以内	±1.0mg/L以内	±1.0mg/L以内
	1点	±0.4mg/L超	±0.4mg/L超	±0.4mg/L超	±0.6mg/L超	±1.0mg/L超	±1.0mg/L超
	試料濃度	4.8mg/L	9.5mg/L	14.4mg/L	28.8mg/L	38.4mg/L	48.4mg/L
NIME	4点	±1.0mg/L以内	±1.0mg/L以内	±1.4mg/L以内	±2.8mg/L以内	±3.8mg/L以内	±4.0mg/L以内
NMF mg/L	3点	±1.5mg/L以内	±1.5mg/L以内	±2.1mg/L以内	±4.3mg/L以内	±5.7mg/L以内	±6.0mg/L以内
o ~	2点	±2.0mg/L以内	±2.0mg/L以内	±2.8mg/L以内	±5.7mg/L以内	±7.6mg/L以内	±8.0mg/L以内
	1点	±2.0mg/L超	±2.0mg/L超	±2.8mg/L超	±5.7mg/L超	±7.6mg/L超	±8.0mg/L超

5. 総合評価

精度管理調査に参加した施設の精度を評価するにあたり、報告された測定値について、前述の「解析値評価」及び「許容範囲評価」で数値化した各項目における換算値を合計して満点 50 点となるが、さらに総合点として 100 点満点に換算して評価の目安とした。この後、総合点が 85 点以上は A、85 点未満 70 点以上を B、70 点未満 60 点以上を C、60 点未満を D とする 4 段階のランク別評価を行った。

AからDまでの4段階で施設評価を行うのは、点数は単に区分として設けただけであり、点数によって参加施設間の優位を述べるのが目的ではなく、参加施設の精度管理の現状について全衛連が求める基準を満たしているかどうかを知らしめるためである。

A ランク評価を得た施設はもちろんのこと B ランク評価の施設までは、全衛連の定めた評価基準を満たしている施設といえる。以下に A から D までの 4 段階評価の意味合いを記載する。

【総合評価(A)】 評価合計点の平均が 85点以上の施設	技術的に良好で、この状態を維持する努力をして欲しい。
【総合評価(B)】 評価合計点の平均が 70 点以上 85 点未満の施設	技術的に良好な状態にするため 努力をして欲しい。
【総合評価(C)】 評価合計点の平均が 60点以上70点未満の施設	技術的に良好な状態にするため 一層の努力をして欲しい。
【総合評価 (D)】 評価合計点の平均が 60点未満の施設	技術的に不十分であり、 早急な対策と努力が必要である。

参加施設に送る評価結果通知書にはAからDまでのいずれかを記載して通知している。

表 II-10 には、試料濃度と仕込み濃度の違いを示した。

(仕込み濃度/試料濃度) $\times 100$ の値は、 $89 \sim 103\%$ であり、概ね一致した結果が得られた。なお評価は、従来通り試料濃度の値を用いて行った。

表Ⅱ-10 試料濃度と仕込み濃度の違い

<u>XII 10 µ</u>	内が成及と日色が成及り産	試料	試料	試料	試料	試料	試料	
項目	濃度	(1)	(2)	(3)	武 (4)	(5)	(6)	平均値
	 試料濃度	7.3	14.1	22.8	31.5	40.0	43.9	_
Pb-B	仕込み濃度	6.8	13.5	22.5	31.5	40.5	45.0	_
$(\mu g/dL)$	仕込み濃度ー試料濃度	-0.6	-0.6	-0.3	0.0	0.5	1.1	_
	(仕込み濃度/試料濃度)×100	92	96	99	100	101	103	98
	 試料濃度	1.9	3.7	5.9	7.9	10.5	12.3	_
ALA	仕込み濃度	1.9	3.8	5.9	8.0	10.6	12.4	-
(mg/L)	仕込み濃度ー試料濃度	0.0	0.1	0.0	0.1	0.1	0.1	_
	(仕込み濃度/試料濃度)×100	99	102	99	101	101	101	100
	試料濃度	0.52	0.85	1.02	1.46	1.77	1.83	_
MHA	仕込み濃度	0.51	0.86	1.01	1.45	1.76	1.83	_
(g/L)	仕込み濃度ー試料濃度	-0.01	0.01	-0.01	-0.01	-0.01	0.00	_
1	(仕込み濃度/試料濃度)×100	99	101	99	99	100	100	100
	試料濃度	0.48	0.81	1.12	1.78	2.19	2.89	_
НА	仕込み濃度	0.47	0.80	1.12	1.77	2.19	2.88	_
(g/L)	仕込み濃度-試料濃度	-0.01	-0.01	0.00	-0.01	0.00	-0.01	_
	(仕込み濃度/試料濃度)×100	99	99	100	99	100	100	99
	試料濃度	0.18	0.26	0.37	0.55	0.77	1.19	-
MA (g/L)	仕込み濃度	0.18	0.25	0.37	0.55	0.76	1.18	-
	仕込み濃度-試料濃度	-0.01	-0.01	0.00	0.00	-0.01	-0.01	_
	(仕込み濃度/試料濃度)×100	97	97	100	100	98	99	99
	試料濃度	2.8	10.1	27.2	54.8	84.7	122.7	-
TTC	仕込み濃度	2.6	9.6	25.8	52.5	81.4	115.8	_
(mg/L)	仕込み濃度-試料濃度	-0.2	-0.5	-1.4	-2.3	-3.3	-6.9	-
	(仕込み濃度/試料濃度)×100	93	95	95	96	96	94	95
	試料濃度	1.7	4.4	8.7	13.5	29.2	40.7	_
TCA	仕込み濃度	1.5	4.0	8.0	12.6	27.6	38.2	_
(mg/L)	仕込み濃度-試料濃度	-0.2	-0.4	-0.7	-0.9	-1.6	- 2.5	_
	(仕込み濃度/試料濃度)×100	89	91	92	93	95	94	92
	試料濃度	1.1	1.7	2.2	3.3	5.0	5.6	_
HD	仕込み濃度	1.1	1.7	2.2	3.3	5.0	5.5	_
(mg/L)	仕込み濃度ー試料濃度	0.0	0.0	0.0	0.0	0.0	-0.1	_
	(仕込み濃度/試料濃度)×100	100	100	100	100	100	98	100
	試料濃度	4.8	9.5	14.4	28.8	38.4	48.4	_
NMF (mg/L)	仕込み濃度	4.8	9.6	14.4	28.8	38.4	48.0	_
	仕込み濃度-試料濃度	0.0	0.1	0.0	0.0	0.0	-0.4	_
	(仕込み濃度/試料濃度)×100	100	101	100	100	100	99	100
	試料濃度	0.31	0.57		_		_	_
PGA	仕込み濃度	0.30	0.55		_		_	_
(mg/L)	仕込み濃度-試料濃度	-0.01	-0.02	_	_	_	_	
Γ	(仕込み濃度/試料濃度)×100	96	97		_		_	96

Ⅲ. 調査結果 1 (全体的評価結果)

- 1. 総合評価結果
- 2. 調査項目別の評価結果
- 3. 解析値評価の調査項目別の得点別施設数および比率
- 4. 試料番号別の得点別施設数および比率

1. 総合評価結果

精度管理調査に参加した施設の評価結果については、 Π 章に記載の「評価方法」による手順により、測定結果を点数変換して点数評価を行い、同じく Π 章の「総合評価」で説明した A から D までの 4 段階で最終的に参加施設を評価した。

今般、令和6年度の評価結果については令和7年3月5日付けの全衛連発第152号文書と評価結果証を以て通知した。今年度も高い精度を確保できている結果となった。表Ⅲ-1に、第36回精度管理調査から第38回までの3年間の精度管理調査参加施設の総合評価結果の内訳を示した。(参加1施設は、2調査項目のみの参加のため施設の総合評価は行っていない)

参考に、表Ⅲ-2 に全参加施設の項目別評価の平均点について初年度第 1 回から令和 6 年度第 38 回までの項目別に評価合計点の平均と測定値の標準偏差の推移を示した。 なお、B 参加施設の評価結果については、通常測定を委託している登録衛生検査所 (実施年度の全衛連精度管理調査に参加して、送付された試料の測定値を問い合わせる事が出来る施設であること) から得られた測定値で評価される。このことは、B 参加施設の精度管理の評価の善し悪しは測定を委託する外部測定機関の精度に収れんされることであり、委託施設と受託施設の精度を確保するため、検体の受け渡までの保存管理から搬送と、連携が正常に機能していることが必要であり、測定委託先の精度管理状況を把握していることが重要と留意されたい。

表III-1 総合評価結果 (3 年間の推移)

評価	令和6年度(第38回)	令和5年度(第37回)	令和4年度(第36回)	
рт іші	321 施設	322 施設	323 施設	
A	321 (100%)	321 (99.7%)	323 (100%)	
В	0 (0.0%)	1 (0.3%)	0 (0.0%)	
С	0 (0.0%)	0 (0.0%)	0 (0.0%)	
D	0 (0.0%)	0 (0.0%)	0 (0.0%)	

^{※ 1} 施設総合評価せず

表Ⅲ-2 項目別評価合計点の平均土標準偏差の年度推移

2011 2		2 1 HH	П h ι ννν.		_ W +	71117 /	1 /文1正	1/				
口	年月 項目	Pb-B	FEP	ALA	MHA	HA	MA	TTC	TCA	HD	MFA	NMF
笠 1 回	昭和63年	84.4	81.2	90.0	81.6	90.0	90.4	90.4	85.2			
第1回	10月	±22.96	±26.56	±1496	± 30.86	± 18.96	±16.88	±17.76	±18.20			
第2回	平成元年	88.4	85.2	91.6	88.8	90.0	86.8	93.6	92.8			
第2凹	2月	±18.80	±13.96	±13.20	± 23.00	± 15.40	±22.36	±15.48	±15.76			
第3回	平成元年	93.6	90.8	91.2	88.0	88.8	87.2	92.4	91.2			
あり凹	10月	±13.16	±1436	±13.24	±2116	± 18.32	±18.76	±9.68	±9.76			
第4回	平成2年	94.8	88.9	86.8	94.8	93.6	94.4	86.8	89.6	91.2	91.6	
第4回	10月	±12.76	±18.11	±18.24	±13.76	±13.52	±13.68	±19.36	±21.76	±13.36	±17.72	
第5回	平成3年	93.4	83.1	79.0	92.3	90.7	93.1	86.8	88.7	83.3	88.1	
おり凹	10月	±15.13	±22.92	±21.54	±17.07	±15.61	±15.23	±19.59	±18.43	±22.06	±21.59	
第6回	平成4年	91.3		90.5	93.	89.1	88.0	94.2	96.0		92.8	
第 0回	12月	± 13.98		±12.96	7 ± 9.86	±14.02	±11.45	±13.15	±13.91		±14.66	
第7回	平成5年	91.8	86.5	93.5	95.0	96.0	95.5	94.7	93.7	92.7	95.2	
	12月	±13.11	±14.08	±11.85	±9.99	± 7.33	±8.24	±11.43	±11.84	±15.15	±12.70	
第8回	平成6年	94.6	89.8	94.3	96.5	94.7	96.6	93.6	93.6	93.3	94.6	
50円	12月	±10.70	±13.46	±11.04	± 9.95	± 8.65	±8.09	±8.03	±8.75	±12.53	±13.24	

		1 1		1	1	ı	1	1		
第9回	平成7年	93.1	87.0	95.2	94.1	94.2	86.9	92.1	89.2	
3,00	12月	±14.26	 ±18.65	±11.10	±11.88	±13.12	±11.28		±14.05	
第10回	平成8年	92.6	92.5	96.0	95.9	96.1	85.3	87.5	86.9	
	12月	±10.9	 ±10.5	±12.0	±11.5	±10.9	±15.9	±16.8	±15.3	
第11回	平成9年	94.6	93.2	93.9	94.2	93.2	95.5	97.3	95.0	
	12月	±9.2	 ±9.2	±9.7	±8.7	±8.9	±8.9	±6.9	±8.0	
第12回	平成10年 11月	91.1	91.5	96.7	96.5	96.8	92.8	96.4	96.0	
		±11.3	 ±11.7	±10.8 95.6	±6.4	<u>±8.1</u> 95.0	±9.8	±9.6 94.9	±10.2	
第13回	平成11年 11月	94.7	95.1		95.7		95.5 ±10.35		92.4 ±13.24	
	平成12年	±9.55	 <u>±9.81</u> 97.1	±12.09	±9.93 96.8	±10.77 95.2	94.9	±10.92 95.2	93.3	
第14回	11月	±9.35	 ±8.66	±8.27	±9.56	±7.35	±8.71	±8.74	±8.25	
	平成13年	95.6	95.9	96.4	96.1	96.6	95.4	94.8	96.0	
第15回	11月	±8.15	 ±9.41	±7.87	±6.00	±7.99	±11.25		±7.57	
	平成14年	95.5	98.3	96.8	97.5	96.3	95.7	98.1	97.2	
第16回	11月	±6.86	 ±4.45	±5.68	±5.47	±6.87	±6.71	±4.67	±5.67	
	平成15年	95.5	97.1	96.5	97.7	97.4	97.2	964	97.4	
第17回	11月	±8.49	 ±6.44	±5.58	±6.67	±6.57	±4.26	±4.55	±5.19	
**	平成16年	94.9	97.4	97.1	95.8	97.6	92.	95.6	95.5	
第18回	11月	±8.12	 ±4.92	±5.08	±5.39	±5.94	9±5.69	±5.01	±4.75	
77.40	平成17年	92.3	97.6	95.7	96.3	94.9	93.1	93.1	95.3	
第19回	11月	±7.70	 ±5.62	±6.88	±5.23	±5.46	±8.08	±7.44	±5.17	
## 0.0 E	平成18年	98.1	96.5	97.6	96.3	96.4	96.0	98.7	97.1	
第20回	11月	±6.81	 ±5.23	±6.40	±5.29	±5.21	±5.94	±5.85	±4.50	
₩ 0.1 E	平成19年	97.6	99.6	99.1	99.4	99.4	97.9	99.6	98.1	
第21回	11月	±2.49	 ±1.16	±3.97	±4.34	±5.11	±4.53	±4.09	±5.01	
笠の同	平成20年	98.5	96.7	97.8	98.9	96.9	96.7	92.2	97.2	
第22回	10月	±5.49	 ±8.63	±5.69	±5.40	±6.59	±8.21	±15.73	±8.14	
第23回	平成21年	98.2	96.1	98.3	99.3	99.1	96.7	97.6	96.7	
弗Z3凹	12月	±7.98	 ±7.11	±7.92	±5.99	±6.82	±6.11	±6.51	±7.05	
第24回	平成22年	96.4	99.5	99.1	99.7	98.6	98.2	99.2	93.9	
#24B	12月	±9.25	 ±3.92	±1.99	±1.84	±5.01	±2.72	±1.27	±5.23	
第25回	平成23年	99.7	99.7	99.5	99.7	99.5	99.2	99.3	98.0	
WEO E	12月	±1.17	 ±1.58	±3.81	±1.33	±3.47	±1.24	±1.11	±2.45	
第26回	平成24年	97.6	98.8	99.6	99.5	99.3	96.5	98.9	96.8	
N120E	12月	±2.26	 ±3.20	±2.35	±1.13	±1.55	±3.98	±3.00	±2.59	
第27回	平成25年	99.5	98.5	99.6	99.4	99.3	99.2	99.2	97.7	
7,2,1	12月	±2.68	 ±1.99	±4.33	±1.85	±2.60	±1.41	±2.50	±3.26	
第28回	平成26年	97.2	98.9	99.8	99.7	98.9	98.3	98.7	98.4	
УУСОП	12月	±4.92	 ±4.60	±0.83	±0.86	±5.28	±4.65	±4.55	±6.64	
第29回	平成27年	94.5	94.5	97.7	99.2	97.8	94.4	93.3	93.9	
7,7	12月	±19.26	 ±20.53	±12.02	±7.42	±12.02	±18.01	±19.07	±21.09	
第30回	平成28年	99.4	99.8	99.6	99.7	99.5	99.6	99.4	99.7	
	12月	±1.21	 ±1.26	±4.97	±3.82	±4.71	±3.74	±4.42	±2.72	
第31回	平成29年 12月	97.8	99.8	99.7	99.8	99.9	98.4	99.8	99.7	
		±3.49	 ±1.85	±3.72	±3.40	±1.61	±4.07	±2.96	±3.86	
第32回	平成30年 12月	99.5	99.6	99.6 ±4.70	99.5	99.2	99.5	99.6	99.6	
		±3.96	 ±4.17		±5.24	±4.28	±4.97	±4.55	±4.19	
第33回	令和元年 12月	95.4	100.0	99.9	99.9 ±1.17	99.1	100.0	100.0	99.9	
		±9.28 99.8	 ±019	±1.23 98.7	99.9	±1.65 99.7	±0.22 97.7	±0.22 99.0	±0.71 99.5	
第34回	令和2年 12月				99.9 ±1.21					 <u></u> _
		±1.12 98.0	 ±1.35	±6.26 99.1	99.7	±1.98 99.5	±3.98 99.0	±3.10 98.8	±1.52 99.8	 94.5
第35回	令和3年 12月	±3.91	 ±3.79	±4.06	±3.88	±1.00	±3.09	±3.43	±2.22	 94.5 ±17.52
				99.5	± 3.88 99.3	99.5	±3.09 98.8	±3.43 97.0	99.2	
第36回	令和4年 12月	95.9 ±6.01	 100.0 ±0.11	99.5 ±0.87	99.3 ±1.34	99.5 ±3.47	98.8 ±4.28	97.0 ±8.46	±3.92	 98.2 ±5.71
		±6.01 98.2	 98.5	±0.87	$\frac{\pm 1.34}{99.4}$	±3.47 99.3	<u>±4.28</u> 99.9	<u>±8.46</u> 99.1	±3.92 84.6	 <u> </u>
第37回	令和5年 12月	±4.53	 98.5 ±2.71		99.4 ±1.86		±0.52	±2.50		 97.4 ±4.64
-	令和6年	99.7	 99.5	±0.61 99.8	99.6	±1.44 99.6	99.9	99.8	±10.34 98.0	 <u> </u>
第38回	令和6年 12月	±1.23	 99.5 ±2.41	±0.56	±1.56	±0.83	99.9 ±0.72	±0.85	±6.70	 ±3.00
	1.47	L— 1.23	 <u> 1 2.4 </u>	L U.UU	L — 1.00	L — U.O O	L — U. / Z	L - U.OU	L — U./U	 I — 0.00

2 調査項目別の評価結果(表Ⅲ・3)

表Ⅲ-3-1 から表Ⅲ-3-9 には、調査項目ごとの評価点でランク分けを行った結果を示した。総合評価結果は調査項目の点数評価を平均した結果であり、表Ⅲ-3-1 から表Ⅲ-3-9 に示したとおり一部の項目で評価点が低い施設がみられた。これら評価点が低い項目のある施設については「考察と指導コメント」にて個別に報告する。

3. 解析値評価の調査項目別の得点別施設数および比率

調査項目別に、Ⅱ章【評価方法】の「1.解析値評価および許容範囲評価」に記載のある解析値評価の種類・回収率・再現性・測定バラツキ(tanθ)・真度(PI-1)・平均真度(PI-2)についての結果一覧を表Ⅲ-4に示す。評価点の低い施設については「考察と指導コメント」にて報告する。

4. 試料番号ごとの得点別施設数および比率

A 参加施設に配付した試料(各項目 6 試料)ごとの得点分布を表Ⅲ-5 に示す。特定 試料で得点の低い施設については「考察と指導コメント」にて報告する。

表Ⅲ-3 調査項目ごとの評価合計点別施設数

表Ⅲ-3-1 Pb-B

表Ⅲ-3-2 ALA

衣皿 3 TFD B								
評価	自施設	贪査施設	全旅	全施設				
合計点	施設数	比率(%)	施設数	比率(%)				
0~59	0	0.0%	0	0.0%				
60~69	0	0.0%	0	0.0%				
70 ~ 79	0	0.0%	0	0.0%				
80~84	0	0.0%	0	0.0%				
85 ~ 89	0	0.0%	0	0.0%				
90~99	4	14.3%	16	5.0%				
100	24	85.7%	305	95.0%				
合計(平均)	28(99.4)		321(99.7)					

2								
評価	自施設	食査施設	全施設					
合計点	施設数	比率(%)	施設数	比率(%)				
0~59	0	0.0%	0	0.0%				
60~69	0	0.0%	0	0.0%				
70 ~ 79	0	0.0%	0	0.0%				
80~84	0	0.0%	0	0.0%				
85 ~ 89	1	3.6%	13	4.0%				
90~99	1	3.6%	1	0.3%				
100	26	92.9%	307	95.6%				
合計(平均)	28(99.3)		321(99.5)					
•								

表皿-3-3 MHA

表	Ш-	-3-	-4	Η.	Α

<u> </u>							
評価	自施設植	倹査施設	全施設				
合計点	施設数	比率(%)	施設数	比率(%)			
0~59	0	0.0%	0	0.0%			
60 ~ 69	0	0.0%	0	0.0%			
70 ~ 79	0	0.0%	0	0.0%			
80~84	0	0.0%	0	0.0%			
85 ~ 89	0	0.0%	0	0.0%			
90~99	5	17.2%	27	8.4%			
100	24	82.8%	295	91.6%			
合計(平均)	29(99.7)		322(99.8)				

<u> </u>					
評価	自施設検査施設		全施設		
合計点	施設数	比率(%)	施設数	比率(%)	
0~59	0	0.0%	0	0.0%	
60~69	0	0.0%	0	0.0%	
70 ~ 79	0	0.0%	0	0.0%	
80~84	0	0.0%	0	0.0%	
85 ~ 89	0	0.0%	0	0.0%	
90~99	3	10.3%	26	8.1%	
100	26	89.7%	296	91.9%	
合計(平均)	29(99.6)		322(99.6)		

表Ⅲ-3-5 MA

表Ⅲ-3-6 TTC

評価	自施設検査施設		全施設	
合計点	施設数	比率(%)	施設数	比率(%)
0~59	0	0.0%	0	0.0%
60~69	0	0.0%	0	0.0%
70 ~ 79	0	0.0%	0	0.0%
80~84	0	0.0%	0	0.0%
85 ~ 89	0	0.0%	0	0.0%
90~99	1	3.6%	71	22.1%
100	27	96.4%	250	77.9%
合計(平均)	28(99.9)		321(99.6)	

衣皿-3-0 110					
評価	自施設検査施設		全施設		
合計点	施設数	比率(%)	施設数	比率(%)	
0~59	0	0.0%	0	0.0%	
60~69	0	0.0%	0	0.0%	
70 ~ 79	0	0.0%	0	0.0%	
80~84	0	0.0%	0	0.0%	
85 ~ 89	0	0.0%	0	0.0%	
90~99	4	15.4%	9	2.8%	
100	22	84.6%	310	97.2%	
合計(平均)	26(99.5)		319(99.9)		

表皿-3-7 TCA_______ 表皿-3-8 HD

評価	自施設検査施設		全施設	
合計点	0	比率(%)	施設数	比率(%)
0~59	0	0.0%	0	0.0%
60~69	0	0.0%	0	0.0%
70 ~ 79	0	0.0%	0	0.0%
80~84	0	0.0%	0	0.0%
85 ~ 89	0	0.0%	0	0.0%
90~99	6	23.1%	22	6.9%
100	20	76.9%	296	93.1%
合計(平均)	26(99.3)		318(99.8)	

<u>X</u> _ 0 0 1 12					
評価	自施設検査施設		全施設		
0	施設数	比率(%)	施設数	比率(%)	
0~59	0	0.0%	0	0.0%	
60 ~ 69	2	7.1%	13	4.0%	
70 ~ 79	0	0.0%	0	0.0%	
80~84	0	0.0%	0	0.0%	
85 ~ 89	0	0.0%	0	0.0%	
90~99	10	35.7%	96	29.9%	
100	16	57.1%	212	66.0%	
合計(平均)	28(96.6)		321(98.0)		

表Ⅲ-3-9 NMF

表面 0 0 111VII					
評価	自施設検査施設		全施設		
合計点	施設数	比率(%)	施設数	比率(%)	
0~59	0	0.0%	0	0.0%	
60 ~ 69	1	3.6%	1	0.3%	
70 ~ 79	0	0.0%	0	0.0%	
80~84	0	0.0%	0	0.0%	
85 ~ 89	0	0.0%	0	0.0%	
90~99	10	35.7%	120	37.4%	
100	17	60.7%	200	62.3%	
合計(平均)	28(97.0)		321(98.1)		

表Ⅲ-4 解析値評価の調査項目別の別得点分布(得点別施設数および比率)

表Ⅲ-4-1 Pb-B

<u> 10 m</u>										
					回帰分析					
得点	回4	又率	再现	見性	tar	nΘ	PI	-1	PI	-2
6	26	92.9%	25	89.3%	28	100.0%				
5	2	7.1%	3	10.7%	0	0.0%				
4	0	0.0%	0	0.0%	0	0.0%	27	96.4%	26	92.9%
3	0	0.0%	0	0.0%	0	0.0%	1	3.6%	2	7.1%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
0	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	28		28		28		28		28	

表Ⅲ-4-2 ALA

<u>жшт</u>	_ , (_, ,									
					回帰分析					
得点	回北	又率	再现	見性	tar	nΘ	PI	-1	ΡΙ	-2
6	26	92.9%	28	100.0%	27	96.4%				
5	2	7.1%	0	0.0%	1	3.6%				
4	0	0.0%	0	0.0%	0	0.0%	26	92.9%	26	92.9%
3	0	0.0%	0	0.0%	0	0.0%	2	7.1%	1	3.6%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	1	3.6%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
0	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	28		28		28		28		28	

表Ⅲ-4-3 MHA

<u> </u>	<u> </u>									
					回帰分析					
得点	回4	又率	再现	見性	tar	nΘ	PI	-1	ΡΙ·	-2
6	29	100.0%	24	82.8%	29	100.0%				
5	0	0.0%	5	17.2%	0	0.0%				
4	0	0.0%	0	0.0%	0	0.0%	29	100.0%	29	100.0%
3	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
0	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	29		29		29		29		29	

表皿-4-4 HA

					回帰分析					
得点	回北	又率	再現	見性	tar	nΘ	PI	-1	ΡΙ	-2
6	27	93.1%	28	96.6%	28	96.6%				
5	2	6.9%	1	3.4%	1	3.4%				
4	0	0.0%	0	0.0%	0	0.0%	28	96.6%	28	96.6%
3	0	0.0%	0	0.0%	0	0.0%	1	3.4%	1	3.4%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
0	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	29		29		29		29		29	

表<u>II-4-5</u> MA

					回帰分析					
得点	回址	又率	再现	見性	tar	ıΘ	PI	-1	PI	-2
6	28	100.0%	27	96.4%	28	100.0%				
5	0	0.0%	1	3.6%	0	0.0%				
4	0	0.0%	0	0.0%	0	0.0%	28	100.0%	28	100.0%
3	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
0	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	28	·	28	·	28		28		28	

表Ⅲ-4-6 TTC

<u> 2X ш т ч</u>	• •									
					回帰分析					
得点	回址	又率	再现	見性	tar	ıΘ	PI	-1	ΡΙ·	-2
6	25	96.2%	22	84.6%	26	100.0%				
5	1	3.8%	3	11.5%	0	0.0%				
4	0	0.0%	0	0.0%	0	0.0%	26	100.0%	26	100.0%
3	0	0.0%	1	3.8%	0	0.0%	0	0.0%	0	0.0%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
0	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	26		26		26		26		26	

表皿-4-7 TCA

					回帰分析					
得点	回址	又率	再现	見性	tar	ıΘ	PI	-1	ΡΙ	-2
6	24	92.3%	22	84.6%	26	100.0%				
5	2	7.7%	3	11.5%	0	0.0%				
4	0	0.0%	1	3.8%	0	0.0%	25	96.2%	25	96.2%
3	0	0.0%	0	0.0%	0	0.0%	1	3.8%	1	3.8%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
0	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	26		26		26		26		26	

表Ⅲ-4-8 HD

					回帰分析					
得点	回山	又率	再现	見性	tar	ıΘ	PI	-1	ΡΙ	-2
6	25	89.3%	19	67.9%	26	92.9%				
5	1	3.6%	9	32.1%	2	7.1%				
4	2	7.1%	0	0.0%	0	0.0%	24	85.7%	24	85.7%
3	0	0.0%	0	0.0%	0	0.0%	2	7.1%	2	7.1%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	2	7.1%	2	7.1%
0	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	28		28		28		28		28	

表Ⅲ-4-9 NMF

					回帰分析					
得点	回址	又率	再现	見性	tar	ıΘ	PI	-1	ΡΙ	-2
6	24	85.7%	27	96.4%	26	92.9%				
5	3	10.7%	1	3.6%	1	3.6%				
4	0	0.0%	0	0.0%	1	3.6%	18	64.3%	17	60.7%
3	1	3.6%	0	0.0%	0	0.0%	9	32.1%	10	35.7%
2	0	0.0%	0	0.0%	0	0.0%	1	3.6%	1	3.6%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
0	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	28		28		28		28		28	

表Ⅲ-5 試料番号別の得点分布(得点別施設数および比率)

	表	ш-	5-	1	Ρ	b-	В
--	---	----	----	---	---	----	---

得点	試剝	料1	試	料2	試剝	料3	試	料4	試	料5	試制	46
4	28	100.0%	28	100.0%	28	100.0%	28	100.0%	28	100.0%	28	100.0%
3	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	28		28		28		28		28		28	

表Ⅲ-5-2 ALA

得点	試剝	料1	試	料2	試制	43	試	料4	試	料5	試剝	料6
4	28	100.0%	28	100.0%	27	96.4%	27	96.4%	28	100.0%	28	100.0%
3	0	0.0%	0	0.0%	1	3.6%	1	3.6%	0	0.0%	0	0.0%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	28		28		28		28		28		28	

表Ⅲ-5-3 MHA

<u> 1X III U</u>	<u> </u>											
得点	試剝	料1	試	料2	試	料3	試	料4	試	料5	試剝	46
4	29	100.0%	29	100.0%	29	100.0%	29	100.0%	29	100.0%	29	100.0%
3	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	29		29		29		29		29		29	

表皿-5-4 HA

得点	試	料1	試	料2	試	料3	試	料4	試	料5	試剝	46
4	29	100.0%	29	100.0%	29	100.0%	29	100.0%	29	100.0%	29	100.0%
3	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	29		29		29		29		29		29	

表II-5-5 MA

得点	試	料1	試	料2	試	43	試	料4	試料5		試料6	
4	28	100.0%	28	100.0%	28	100.0%	28	100.0%	28	100.0%	28	100.0%
3	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	28		28		28		28		28		28	

表Ⅲ-5-6 TTC

得点	試剝	料1	試	料2	試	料3	試	料4	試料5		試料6	
4	26	100.0%	26	100.0%	26	100.0%	26	100.0%	26	100.0%	26	100.0%
3	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	26		26		26		26		26		26	

表皿-5-7 TCA

得点	試剝	料1	試剝	料2	試剝	料3	試	料4	試	料5	試制	46
4	26	100.0%	26	100.0%	26	100.0%	26	100.0%	26	100.0%	26	100.0%
3	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
2	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	26		26		26		26		26		26	

表皿-5-8 HD

得点	試剝	料1	試剝	42	試剝	43	試	料4	試	料5	試	料6
4	28	100.0%	27	96.4%	26	92.9%	26	92.9%	26	92.9%	26	92.9%
3	0	0.0%	1	3.6%	0	0.0%	0	0.0%	0	0.0%	1	3.6%
2	0	0.0%	0	0.0%	2	7.1%	2	7.1%	2	7.1%	1	3.6%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	28		28		28		28		28		28	

<u>表Ⅲ-5-9 NMF</u>

得点	試	料1	試剝	42	試剝	43	試	料4	試剝	料5	試剝	46
4	28	100.0%	26	92.9%	27	96.4%	27	96.4%	27	96.4%	27	96.4%
3	0	0.0%	2	7.1%	1	3.6%	0	0.0%	0	0.0%	0	0.0%
2	0	0.0%	0	0.0%	0	0.0%	1	3.6%	1	3.6%	1	3.6%
1	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%	0	0.0%
合計	28		28		28		28		28		28	

5. 各調査項目の測定方法および測定方法別得点分布

A 参加施設が各調査項目の測定に採用している測定法を過去 3 回について表III-6-1~表III-6-9 に示した。表III-7-1~表-7-9 には、測定方法別の得点を示す。

表III-6-1 Pb-B

調査項目	測定方法	旦	施設数
	フレームレス原子吸光法	第 38 回	27
		第 37 回	27
	コード番号 1-1	第 36 回	31
Pb-B	ICP-MS 法	第 38 回	0
	·	第 37 回	0
参加 27 施設	コード番号 1-3	第 36 回	0
	その他	第 38 回	0
	- ,-	第 37 回	0
	コード番号 1-9	第 36 回	0

表III-6-2 ALA

調査項目	測定方法	口	施設数
	数十 左 国计	第 38 回	0
	緒方-友国法 コード番号 3-3	第 37 回	0
		第 36 回	0
A T A		第 38 回	27
ALA 参加 27 施設	液体クロマトグラフ法 コード番号 3-5	第 37 回	27
参加 27 加西文		第 36 回	28
	7. 0 lih	第 38 回	0
	その他 コード番号 3-9	第 37 回	0
	一 l`宙力 J=7 	第 36 回	0

表III-6-3 MHA

調査項目	測定方法	日	施設数
		第 38 回	27
	液体クロマトグラフ法 コード番号 4-1	第 37 回	26
		第 36 回	25
	ガスクロマトグラフ法	第 38 回	0
	カスクロマトクラフ伝 コード番号 4-3	第 37 回	0
	一 「留力 4- 5	第 36 回	0
	CC MS V+	第 38 回	0
	GC-MS 法 コード番号 4-4	第 37 回	0
MHA		第 36 回	0
参加 29 施設	I.C. MS V+	第 38 回	1
	LC-MS 法 コード番号 4-5	第 37 回	1
	ー 「音々 4- 3	第 36 回	2
	酵素法	第 38 回	1
	コード番号 4-6	第 37 回	1
	※参考データ(今回評価に使用してません)	第 36 回	1
	2014	第 38 回	0
	その他 コード番号 4 - 9	第 37 回	0
		第 36 回	0

表III-6-4 HA

調査項目	測定方法	口	施設数
		第 38 回	27
	液体クロマトグラフ法 コード番号 4-1	第 37 回	26
		第 36 回	25
	ガフカロートがニコ汁	第 38 回	0
	ガスクロマトグラフ法	第 37 回	0
		第 36 回	0
	GC-MS 法	第 38 回	0
	GC = MS 伝 コード番号 4-4	第 37 回	0
HA		第 36 回	0
参加 29 施設	I.C. MS *+	第 38 回	1
	LC-MS 法 コード番号 4-5	第 37 回	1
		第 36 回	2
	酵素法	第 38 回	1
	コード番号 4-6	第 37 回	1
	※参考データ(今回評価に使用してません)	第 36 回	1
	2014	第 38 回	0
	その他 コード番号 4-9	第 37 回	0
	· · · · · · · · · · · · · · · · · · ·	第 36 回	0

表III-6-5 MA

調査項目	測定方法	口	施設数
		第 38 回	26
	液体クロマトグラフ法 コード番号 6-1	第 37 回	25
	4 1 1 1 1 1 1 1 1 1	第 36 回	27
	ゼフカーー」がニコ汁	第 38 回	0
	ガスクロマトグラフ法 コード番号 6-3	第 37 回	0
MA		第 36 回	0
参加 28 施設	I.C. MC V+	第 38 回	2
	LC-MS 法 コード番号 6-4	第 37 回	2
		第 36 回	3
	7. 0.14	第 38 回	0
	その他 コード番号 6-9	第 37 回	0
		第 36 回	0

表III-6-6 TTC

調査項目	測定方法	口	施設数
	ゼフカロートがニコ汁	第 38 回	22
	ガスクロマトグラフ法 コード番号 5-1	第 37 回	23
		第 36 回	25
	亚 水水 库汁	第 38 回	0
	吸光光度法 コード番号 5-2	第 37 回	0
TTC		第 36 回	0
参加 25 施設	GC-MS 法 コード番号 5-3	第 38 回	3
		第 37 回	3
		第 36 回	3
	7-044	第 38 回	0
	その他 コード番号 5 - 9	第 37 回	0
	一 「笛刀 J=2 	第 36 回	0

表III-6-7 TCA

調査項目	測定方法	口	施設数
	 ガスクロマトグラフ法	第 38 回	22
	カスクロマトクラフ伝 コード番号 5-1	第 37 回	23
		第 36 回	24
	加入人人中外	第 38 回	0
	吸光光度法 コード番号 5-2	第 37 回	0
TCA		第 36 回	0
参加 25 施設	GC-MS 法 コード番号 5-3	第 38 回	3
		第 37 回	3
		第 36 回	3
	7. 0 114	第 38 回	0
	その他 コード番号 5-9	第 37 回	0
	一 T	第 36 回	0

表III-6-8 HD

調査項目	測定方法	口	施設数
	ポフカー・・・バニーン	第 38 回	16
	ガスクロマトグラフ法 コード番号 8-1	第 37 回	15
	ユート街夕 8-1	第 36 回	17
IID	GC-MS 法 コード番号 8-2	第 38 回	11
HD 参加 27 施設		第 37 回	13
参加 27 加西区		第 36 回	14
	7. 0.14	第 38 回	0
	その他 コード番号 8-9	第 37 回	0
		第 36 回	0

表III-6-9 NMF

調査項目	測定方法	回	施設数
		第 38 回	21
	ガスクロマトグラフ法	第 37 回	19
		第 36 回	21
NIME		第 38 回	6
NMF 参加 27 施設	GC-MS 法	第 37 回	9
参加 27 加克		第 36 回	7
		第 38 回	0
	その他	第 37 回	0
		第 36 回	0

表Ⅲ-7 測定方法別得点施設数とその比率 (A 参加施設)

表Ⅲ-7-1 血中鉛 (Pb-B)

	フレームレス原子吸光法		ICP-	ICP-MS法		D他
得点	施設数	相対度数	施設数	相対度数	施設数	相対度数
0~9	0	0.0%	0	0.0%	0	0.0%
10~19	0	0.0%	0	0.0%	0	0.0%
20~29	0	0.0%	0	0.0%	0	0.0%
30~39	0	0.0%	0	0.0%	0	0.0%
40~49	0	0.0%	0	0.0%	0	0.0%
50~59	0	0.0%	0	0.0%	0	0.0%
60~69	0	0.0%	0	0.0%	0	0.0%
70 ~ 79	0	0.0%	0	0.0%	0	0.0%
80~89	0	0.0%	0	0.0%	0	0.0%
90~99	3	11.1%	0	0.0%	0	0.0%
100	24	88.9%	0	0.0%	0	0.0%
合計	27		0		0	

表**Ⅲ-7-**2 尿中デルタアミノレブリン酸 (ALA)

	緒方ーカ	支国法	液体クロマトグラフ法		その	<u>D他</u>
得点	施設数	相対度数	施設数	相対度数	施設数	相対度数
0~9	0	0.0%	0	0.0%	0	0.0%
10~19	0	0.0%	0	0.0%	0	0.0%
20~29	0	0.0%	0	0.0%	0	0.0%
30~39	0	0.0%	0	0.0%	0	0.0%
40~49	0	0.0%	0	0.0%	0	0.0%
50~59	0	0.0%	0	0.0%	0	0.0%
60~69	0	0.0%	0	0.0%	0	0.0%
70 ~ 79	0	0.0%	0	0.0%	0	0.0%
80~89	0	0.0%	1	3.7%	0	0.0%
90~99	0	0.0%	1	3.7%	0	0.0%
100	0	0.0%	25	92.6%	0	0.0%
合計	0		27		0	

表Ⅲ-7-3 尿中馬尿酸 (MHA)

	液体クロマ	トグラフ法	ガスクロマ	トグラフ法	GC-I	VIS法	LC-N	MS法
得点	施設数	相対度数	施設数	相対度数	施設数	相対度数	施設数	相対度数
0~9	0	0.0%	0	0.0%	0	0.0%	0	0.0%
10~19	0	0.0%	0	0.0%	0	0.0%	0	0.0%
20~29	0	0.0%	0	0.0%	0	0.0%	0	0.0%
30~39	0	0.0%	0	0.0%	0	0.0%	0	0.0%
40~49	0	0.0%	0	0.0%	0	0.0%	0	0.0%
50~59	0	0.0%	0	0.0%	0	0.0%	0	0.0%
60~69	0	0.0%	0	0.0%	0	0.0%	0	0.0%
70 ~ 79	0	0.0%	0	0.0%	0	0.0%	0	0.0%
80~89	0	0.0%	0	0.0%	0	0.0%	0	0.0%
90~99	5	18.5%	0	0.0%	0	0.0%	0	0.0%
100	22	81.5%	0	0.0%	0	0.0%	1	0.0%
合計	27		0		0		1	

			- 1.1	
衅	素法	その他		
施設数	相対度数	施設数	相対度数	
0	0.0%	0	0.0%	
0	0.0%	0	0.0%	
0	0.0%	0	0.0%	
0	0.0%	0	0.0%	
0	0.0%	0	0.0%	
0	0.0%	0	0.0%	
0	0.0%	0	0.0%	
0	0.0%	0	0.0%	
0	0.0%	0	0.0%	
0	0.0%	0	0.0%	
1	100.0%	0	0.0%	
1		0		

表Ⅲ-7-4 尿中メチル馬尿酸 (HA)

	液体クロマ	トグラフ法	ガスクロマ	トグラフ法	GC-I	MS法	LC-N	MS法
得点	施設数	相対度数	施設数	相対度数	施設数	相対度数	施設数	相対度数
0~9	0	0.0%	0	0.0%	0	0.0%	0	0.0%
10~19	0	0.0%	0	0.0%	0	0.0%	0	0.0%
20~29	0	0.0%	0	0.0%	0	0.0%	0	0.0%
30~39	0	0.0%	0	0.0%	0	0.0%	0	0.0%
40~49	0	0.0%	0	0.0%	0	0.0%	0	0.0%
50~59	0	0.0%	0	0.0%	0	0.0%	0	0.0%
60~69	0	0.0%	0	0.0%	0	0.0%	0	0.0%
70 ~ 79	0	0.0%	0	0.0%	0	0.0%	0	0.0%
80~89	0	0.0%	0	0.0%	0	0.0%	0	0.0%
90~99	3	11.1%	0	0.0%	0	0.0%	0	0.0%
100	24	88.9%	0	0.0%	0	0.0%	1	0.0%
合計	27		0		0		1	

酵	素法	その他			
施設数	相対度数	施設数	相対度数		
0	0.0%	0	0.0%		
0	0.0%	0	0.0%		
0	0.0%	0	0.0%		
0	0.0%	0	0.0%		
0	0.0%	0	0.0%		
0	0.0%	0	0.0%		
0	0.0%	0	0.0%		
0	0.0%	0	0.0%		
0	0.0%	0	0.0%		
0	0.0%	0	0.0%		
1	100.0%	0	0.0%		
1		0			

表Ⅲ-7-5 尿中マンデル酸 (MA)

	液体クロマ	トグラフ法	ガスクロマ	トグラフ法	LC-N	MS法	その	の他
得点	施設数	相対度数	施設数	相対度数	施設数	相対度数	施設数	相対度数
0~9	0	0.0%	0	0.0%	0	0.0%	0	0.0%
10~19	0	0.0%	0	0.0%	0	0.0%	0	0.0%
20~29	0	0.0%	0	0.0%	0	0.0%	0	0.0%
30~39	0	0.0%	0	0.0%	0	0.0%	0	0.0%
40~49	0	0.0%	0	0.0%	0	0.0%	0	0.0%
50~59	0	0.0%	0	0.0%	0	0.0%	0	0.0%
60~69	0	0.0%	0	0.0%	0	0.0%	0	0.0%
70 ~ 79	0	0.0%	0	0.0%	0	0.0%	0	0.0%
80~89	0	0.0%	0	0.0%	0	0.0%	0	0.0%
90~99	0	0.0%	0	0.0%	1	50.0%	0	0.0%
100	26	100.0%	0	0.0%	1	50.0%	0	0.0%
合計	26		0		2		0	

表Ⅲ-7-6 尿中総三塩化物 (TTC)

	ガスクロマ	トグラフ法	吸光さ	光度法	GC-I	MS法	その	の他
得点	施設数	相対度数	施設数	相対度数	施設数	相対度数	施設数	相対度数
0~9	0	0.0%	0	0.0%	0	0.0%	0	0.0%
10~19	0	0.0%	0	0.0%	0	0.0%	0	0.0%
20~29	0	0.0%	0	0.0%	0	0.0%	0	0.0%
30~39	0	0.0%	0	0.0%	0	0.0%	0	0.0%
40~49	0	0.0%	0	0.0%	0	0.0%	0	0.0%
50~59	0	0.0%	0	0.0%	0	0.0%	0	0.0%
60~69	0	0.0%	0	0.0%	0	0.0%	0	0.0%
70 ~ 79	0	0.0%	0	0.0%	0	0.0%	0	0.0%
80~89	0	0.0%	0	0.0%	0	0.0%	0	0.0%
90~99	3	13.6%	0	0.0%	1	33.3%	0	0.0%
100	19	86.4%	0	0.0%	2	66.7%	0	0.0%
合計	22		0		3		0	

表Ⅲ-7-7 尿中トリクロロ酢酸 (TCA)

	ガスクロマ	トグラフ法	吸光さ	光度法	GC-I	MS法	その他	
得点	施設数	相対度数	施設数	相対度数	施設数	相対度数	施設数	相対度数
0~9	0	0.0%	0	0.0%	0	0.0%	0	0.0%
10~19	0	0.0%	0	0.0%	0	0.0%	0	0.0%
20~29	0	0.0%	0	0.0%	0	0.0%	0	0.0%
30~39	0	0.0%	0	0.0%	0	0.0%	0	0.0%
40~49	0	0.0%	0	0.0%	0	0.0%	0	0.0%
50 ~ 59	0	0.0%	0	0.0%	0	0.0%	0	0.0%
60~69	0	0.0%	0	0.0%	0	0.0%	0	0.0%
70 ~ 79	0	0.0%	0	0.0%	0	0.0%	0	0.0%
80~89	0	0.0%	0	0.0%	0	0.0%	0	0.0%
90~99	5	22.7%	0	0.0%	0	0.0%	0	0.0%
100	17	77.3%	0	0.0%	3	100.0%	0	0.0%
合計	22		0		3		0	

表Ⅲ-7-8 尿中2,5-ヘキサンジオン (HD)

	ガスクロマ	トグラフ法	GC-I	MS法	その	D他
得点	施設数	相対度数	施設数	相対度数	施設数	相対度数
0~9	0	0.0%	0	0.0%	0	0.0%
10~19	0	0.0%	0	0.0%	0	0.0%
20~29	0	0.0%	0	0.0%	0	0.0%
30~39	0	0.0%	0	0.0%	0	0.0%
40~49	0	0.0%	0	0.0%	0	0.0%
50~59	0	0.0%	0	0.0%	0	0.0%
60~69	0	0.0%	2	18.2%	0	0.0%
70~79	0	0.0%	0	0.0%	0	0.0%
80~89	0	0.0%	0	0.0%	0	0.0%
90~99	9	56.3%	1	9.1%	0	0.0%
100	7	43.8%	8	72.7%	0	0.0%
合計	16		11		0	

表Ⅲ-7-9 尿中N-メチルホルムアミド (NMF)

	ガスクロマ	トグラフ法	GC-I	MS法	その	D他
得点	施設数	相対度数	施設数	相対度数	施設数	相対度数
0~9	0	0.0%	0	0.0%	0	0.0%
10~19	0	0.0%	0	0.0%	0	0.0%
20~29	0	0.0%	0	0.0%	0	0.0%
30~39	0	0.0%	0	0.0%	0	0.0%
40~49	0	0.0%	0	0.0%	0	0.0%
50~59	0	0.0%	0	0.0%	0	0.0%
60~69	0	0.0%	1	9.1%	0	0.0%
70 ~ 79	0	0.0%	0	0.0%	0	0.0%
80~89	0	0.0%	0	0.0%	0	0.0%
90~99	7	43.8%	3	27.3%	0	0.0%
100	14	87.5%	2	18.2%	0	0.0%
合計	21		6		0	

6. 測定結果

試料仕込み値

今回の精度管理調査に配付した調査試料の仕込み値を表III-8に示す。

表III-8 送付試料仕込み値

項目		試料番号 ①	試料番号	試料番号	試料番号	試料番号	試料番号
Pb-B	μg/dL	6.8	13.5	22.5	31.5	40.0	45.0
ALA m	ng/L	1.9	3.8	5.9	8.0	10.6	12.4
MHA g	z/L	0.51	0.86	1.01	1.45	1.76	1.83
HA g	g/L	0.47	0.80	1.12	1.77	2.19	2.88
MA g	g/L	0.18	0.25	0.37	0.55	0.76	1.18
TTC m	g/L	2.6	9.6	25.8	52.5	81.4	115.8
TCA m	g/L	1.5	4.0	8.0	12.6	27.6	38.2
HD m	g/L	1.1	1.7	2.2	3.3	5.0	5.5
NMF mg	g/L	4.8	9.6	14.4	28.8	38.4	48.0

調査試料真値 (平均値)

表III-9-1 から表III-9-9 に、自施設で測定する A 参加施設が受け取った調査試料の測定結果について、1回目と 2回目の平均値と標準偏差(SD)の計算結果を項目ごとに示す。

2回目の値は1回目で得られた2SD以上の回答値を除き計算した値であり、表II-5で一覧で示した調査項目ごとの平均値と標準偏差であり、今回各項目の評価に真値として使用した値である。

表III-9-1 Pb-B

試料番号	1	2	3	4	5	6
全参加施設数	321	321	321	321	321	321
A 参加施設数(試料数)	28	28	28	28	28	28
平均値	7.2	14.2	22.9	31.7	39.9	44.0
標準偏差	0.38	0.53	0.69	1.01	1.14	1.21
2回目	27	27	25	26	26	27
平均値	7.3	14.1	22.8	31.5	40.0	43.9
標準偏差	0.28	0.48	0.46	0.84	0.80	1.07

表III-9-2 ALA

試料番号	1	2	3	4	(5)	6
全参加施設数	321	321	321	321	321	321
A 参加施設数(試料数)	28	28	28	28	28	28
平均値	1.9	3.7	5.8	7.8	10.5	12.2
標準偏差	0.08	0.13	0.20	0.24	0.35	0.34
2回目	27	27	26	26	27	26
平均値	1.9	3.7	5.9	7.9	10.5	12.3
標準偏差	0.06	0.10	0.14	0.13	0.31	0.23

表III-9-3 MHA

試料番号	1	2	3	4	(5)	6
全参加施設数	322	322	322	322	322	322
A 参加施設数(試料数)	29	29	29	29	29	29
平均値	0.52	0.85	1.02	1.46	1.77	1.83
標準偏差	0.01	0.02	0.03	0.03	0.03	0.03
2回目	28	27	27	28	29	29
平均値	0.52	0.85	1.02	1.46	1.77	1.83
標準偏差	0.01	0.02	0.02	0.03	0.03	0.03

表III-9-4 HA

• •						
試料番号	1	2	3	4	(5)	6
全参加施設数	322	322	322	322	322	322
A 参加施設数(試料数)	29	29	29	29	29	29
平均値	0.48	0.81	1.13	1.79	2.20	2.90
標準偏差	0.01	0.02	0.03	0.04	0.05	0.06
2回目	25	27	27	28	28	27
平均値	0.48	0.81	1.12	1.78	2.19	2.89
標準偏差	0.01	0.02	0.03	0.03	0.04	0.04

表III-9-5 MA

試料番号	1	2	3	4	5	6
全参加施設数	321	321	321	321	321	321
A 参加施設数(試料数)	28	28	28	28	28	28
平均値	0.18	0.26	0.37	0.55	0.77	1.19
標準偏差	0.01	0.01	0.01	0.01	0.01	0.02
2回目	28	28	28	28	25	28
平均値	0.18	0.26	0.37	0.55	0.77	1.19
標準偏差	0.01	0.01	0.01	0.01	0.01	0.02

※試料数(全数)の合計が合わないのは、測定法コードが未記入の施設がある場合もしくは他の測定法の為。

表III-9-6 TTC

試料番号	1	2	3	4	(5)	6
全参加施設数	319	319	319	319	319	319
A 参加施設数(試料数)	26	26	26	26	26	26
平均値	2.8	10.1	27.2	54.7	84.4	122.4
標準偏差	0.12	0.26	0.67	1.22	1.86	3.48
2回目	25	26	24	25	25	25
平均値	2.8	10.1	27.2	54.8	84.7	122.7
標準偏差	0.11	0.26	0.56	1.11	1.43	3.16
油(合)生 1						

測定法1

全参加施設数	300	300	300	300	300	300
A 参加施設数(試料数)	22	22	22	22	22	22
平均値	2.8	10.1	27.3	54.7	84.4	122.9
標準偏差	0.09	0.26	0.67	1.20	1.90	3.23
2回目	22	22	20	21	21	21
平均値	2.8	10.1	27.3	54.9	84.7	123.3
標準偏差	0.09	0.26	0.54	1.06	1.39	2.89

測定法3

全参加施設数	6	6	6	6	6	6
A 参加施設数(試料数)	3	3	3	3	3	3
平均値	2.8	10.2	27.3	55.0	85.0	119.8
標準偏差	0.16	0.26	0.29	0.94	1.64	3.80
2回目	3	3	3	3	3	3
平均値	2.8	10.2	27.3	55.0	85.0	119.8
標準偏差	0.16	0.26	0.29	0.94	1.64	3.80

表III-9-7 TCA

試料番号	1	2	3	4	(5)	6
全参加施設数	318	318	318	318	318	318
A 参加施設数(試料数)	26	26	26	26	26	26
平均値	1.7	4.4	8.7	13.4	29.2	40.8
標準偏差	0.08	0.16	0.20	0.46	0.81	1.08
2回目	26	24	26	24	25	25
平均値	1.7	4.4	8.7	13.5	29.2	40.7
標準偏差	0.08	0.11	0.20	0.36	0.75	0.96

測定法 1

全参加施設数	299	299	299	299	299	299
A 参加施設数(試料数)	22	22	22	22	22	22
平均値	1.6	4.3	8.7	13.3	29.2	40.8
標準偏差	0.07	0.17	0.20	0.46	0.79	1.02
2回目	20	21	22	21	22	21
平均値	1.6	4.4	8.7	13.4	29.2	40.7
標準偏差	0.05	0.14	0.20	0.41	0.79	0.85

測定法3

全参加施設数	6	6	6	6	6	6
A 参加施設数(試料数)	3	3	3	3	3	3
平均値	1.7	4.4	8.6	13.3	29.1	39.8
標準偏差	0.09	0.09	0.19	0.26	0.25	0.08
2回目	3	3	3	3	3	3
平均値	1.7	4.4	8.6	13.3	29.1	39.8
標準偏差	0.09	0.09	0.19	0.26	0.25	0.08

表III-9-8 HD

試料番号	1	2	3	4	(5)	6
全参加施設数	321	321	321	321	321	321
A 参加施設数(試料数)	28	28	28	28	28	28
平均値	1.1	1.7	2.2	3.4	5.1	5.6
標準偏差	0.06	0.10	0.13	0.16	0.26	0.24
2回目	26	27	26	26	26	26
平均値	1.1	1.7	2.2	3.3	5.0	5.6
標準偏差	0.03	0.08	0.08	0.08	0.14	0.13

表III-9-9 NMF

試料番号	1)	2	3	4	(5)	6
全参加施設数	321	321	321	321	321	321
A 参加施設数(試料	28	28	28	28	28	28
数)						
平均値	4.8	9.5	14.5	29.0	38.7	48.7
標準偏差	0.25	0.65	0.88	1.40	1.96	1.86
2回目	28	28	27	27	27	27
平均値	4.8	9.5	14.4	28.8	38.4	48.4
標準偏差	0.25	0.65	0.81	1.13	1.60	1.38

Ⅳ. 調査結果 2 (個別的評価結果)

- 1. 参加施設の評価結果
- (1) 参加施設の調査項目別評価点
- (2) A 参加施設の解析結果
- 2. A 参加施設の調査項目別偏差測定値分布
- 3. 受託施設における項目別評価等

1. 参加施設の評価結果

(1) 全参加施設の調査項目別評価点

各参加施設の調査項目別評価点、全項目の平均点および総合評価を表IV-1 に示す。

評価点の前の3ケタの数字は、当該項目の測定を委託している委託先を示す施設コード番号(外部機関一覧の外部機関コード番号)である。なお、調査項目別の評価点が70点未満の場合は、外部機関コード番号の前に△を付している。

(2) A 参加施設の解析結果

自施設測定施設の調査項目別の試料ごとの測定値、回帰分析による計算値、試料ごとの許容範囲評価点数の内訳、回帰分析による評価点および合計点は表IV-2-1 から表IV-2-9 に示す。

なお、表中の試料ごとの許容範囲評価点数の内訳については「II. 評価方法」の「1. 解析値評価および許容範囲評価」に詳細を記述している。 表中の「切片」、「傾き」、「合計」および「換算」は次のとおりである。

[切片]: II. 評価方法 2. 1)による回帰直線の Y 切片 a の計算値

[傾き]: II. 評価方法 2. 2) 回収率 b により算出した回収率 b の計算値

[合計]:許容範囲評価点(1)~(6)および解析値評価点 a~e を合計した評価合計点

[換算]:評価合計点を100点満点に換算したもの

表中の「測定方法」は、調査前送付文書の測定方法コード表のコード番号である。

2. A 参加施設の調査項目別偏差測定値分布

A 参加施設における測定値の調査項目別の散布図は、掲載した図IV-1 に示す。 なお、表中の散布図の計算は、測定値 Xi、 A 参加施設 n(1)の平均値を χ (1)とすると $(Xi-\chi^2(1))$ / $\chi^2(1)$ ×100 (%) の式により計算にしている。

3. 受託施設における項目別評価等

自施設測定と外部委託の状況については「I. 調査の概要」の4及び5に記載している。受託施設の項目別評価を表IV-3に示す。

100.0 100.0 99.1 100.0 100.0 8.66 100.0 98.4 9 66 100.0 100.0 0.001 100.0 100.0 100.0 100.0 99.1 99.1 99.1 99.1 100.0 100.0 100.0 100.0 100.0 99.1 99.1 99.1 99.1 99.1 99.1 99. 100.0 100.0 98.9 100.0 100.0 100.0 100.0 100.0 98.9 99.1 98.9 98.9 98.9 6.86 0.001 98.9 100.0 99.7 99.4 0.001 98.9 98.0 98.9 0.001 100.0 99.4 有機平均 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.001 0.001 0.001 0.001 0.001 100.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 鉛平均 <u>00</u> 008 008 008 008 002 100 98 98 98 100 100 98 98 008 002 002 002 002 008 008 100 100 100 100 100 008 008 008 008 008 008 002 002 002 800 800 008 008 002 008 002 002 8 0 0 008 008 008 002 002 002 100 100 98 100 100 100 100 100 100 100 100 100 100 100 힘 MHA 008 008 0008 0008 0008 0002 0008 0008 0008 0008 0008 0008 0008 9 9 9 100 100 別評価一 008 008 002 002 002 800 008 008 008 008 002 全参加施設項目 100 100 100 100 001 001 001 100 100 100 100 100 100 100 008 008 002 800 008 008 008 002 施設コード 04015 02001 01030 表IV-1 22 23 25 25 25 က

ランク	٧	٧	Α	٧	Α	٧	Α	Α	Α	Α	Α	٧	٧	Α	٧	Α	Α	Α	A	Α	Α	A	Α	٧	٧	٧	٧	٧	٧	٧	٧	٧	Α	٧	٧	٧	∢	∢
全平均	100.0	99.1	1.66	9.66	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	6.96	99.1	6 96	100.0	100.0	100.0	100.0	99.1	8.66	98.4	100.0	100.0	99.1	100.0	100.0	100.0	100.0	99.1	100.0	6.96	1.66	99.1	100.0	100.0	98.4	100.0
有機平均	100.0	98.9	6.86	99.4	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	98.6	98.9	986	100.0	100.0	100.0	100.0	98.9	266	98.0	100.0	100.0	6.86	100.0	100.0	100.0	100.0	6.86	100.0	98.6	6.86	6.86	100.0	100.0	98.0	100.0
鉛平均	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	91.0	100.0	91.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	91.0	100.0	100.0	100.0	100.0	100.0	100.0
	100	96	96	96	100	100	100	100	100	100	100	100	94	96	94	100	100	100	100	96	100	94	100	100	96	100	100	100	100	96	100	94	96	96	100	100	94	100
NMF	800	002	005	062	800	800	140	800	800	800		800	900	002	900	800	140		140	002	162	111	800	800	002	140	140	140	800	002	140	900	005	002	800	800	111	800
H	00	86	86	00	100	00	100	00	100	100	100	100	100	86	00	100	100	00	00	86	100	98	100	100	86	100	100	00	100	86	00	00	86	86	100	100	86	100
면	008 10	002 8	002 8	062 100	008 1C	008 100	140 10	008 100	008 10	008 10	10	008 1C	006 1C	002 8	006 100	008 10	140 10	10	140 100	002 8	162 1C		008 1C	008 10	002 8	140 10	140 10	140 100	008 1C	002 8	140 10	006 1C	002 8	002 8	008 1C	008 10		908
ľ)0	ŏ)(0	0	ŏ	1,)0)0)(ŏ	ŏ	ŏ)))(1,		1,	ŏ	<u> </u>	111	0)0	ŏ	1,	1,	1,	ŏ	ŏ	1,	ŏ)(ŏ	ŏ	ŏ	-	ŏ
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
TCA	800	002	005	062	800	800	140	800	800	800		800	900	002	900	800	140		140	002	162	111	800	800	002	140	140	140	800	005	140	900	005	002	800	800	111	800
	00	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	94	0	0	0	0	0	0	0	0	0	0	0	0	0	0	94	0
TTC		100	100	062 100	100	100	100	100	100	100	10	100	100	100	100	100	140 100	100	140 100	100	100		1	100	100	140 100	140 100	140 100	100	100	140 100	100	100	100	100	008 100	- 6	008 100
⊢	800	005	005	90	800	008	140	800	800	800		008	900	005	900	800	14		14	005	162	111	008	800	005	14	14	14	008	005	14	900	005	005	008	00	=	8
	100	98	86	100	100	100	100	100	100	100	100	100	100	98	100	100	100	100	100	98	100	100	100	100	98	100	100	100	100	86	100	100	86	98	100	100	100	100
MA	800	002	005	062	008	008	140	800	800	008		008	900	002	900	008	140		140	002	162	111	008	800	002	140	140	140	008	002	140	900	005	002	008	800	111	800
H	00	00	100	00	00	00	100	00	00	100	100	00	86	100	38	100	00	100	00	00	00	00	00	00	100	00	00	00	100	100	00	86	100	00	00	00	9	8
HA	008 100		002 10	062 100		008 100	140 10			008	1(900	002 10			140 100	1(002 100	162 100	11 100	008 100	001 80	002 10		140 100	140 100	008 10	\vdash	-			002 100	008 100	008 100	1100	008 10
	0	ŏ	0	ŏ	0				0	0		0	ŏ	ŏ	0	0	1,		1,	ŏ	<u> </u>	1	0	0	ŏ	1	1,	1,	ŏ	0	1,	ŏ	0	ŏ	ŏ	ŏ	-	ŏ
٧	100	·	100	100	100	-	100			100	100	100		100		100	100	100	100	100	100	100			100		100	100	100	_	1		100	100	100			100
MHA	800	005	005	062	008	008	140	800	800	800		008	900	005	900	008	140		140	005	162	111	008	800	005	140	140	140	800	005	140	900	005	002	008	800	111	008
	100	100	100	100	100	100	100	100	100	100	100	100	88	100	88	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	88	100	100	100	100	100	100
ALA	800		005		800	800	140			800				005		800			_	005	162	111		ш	005			140	800			900	005		800	800	_	800
											0.							0,				0						Q.										
Pb-B	100		100		100	-	00 100			100	100	100		100		100		100	0 100	100	100	1 100			100		0 100	0 100	100		1		100		100			8 100
Pb	800	005	00	062	00	800	140	800	00	800		800	900	005	00	800	140		140	005	162	11	800	00	005	140	140	140	800	005	140	900	005	005	008	008	=	008
施設コード	60060	09010	09011	09013	10001	10002	10005	11002	11004	11005	11006	11007	11010	11020	11025	11033	12001	12002	12003	12008	12010	12011	12012	12013	12014	12015	12016	12018	13001	13002	13003	13004	13005	13006	13007	13010	13013	13014
	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	22	26	22	28	59	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75

ランク	٧	٧	٧	4	A	⋖	⋖	⋖	٧	٧	٧	4	٧	A	⋖	٧	٧	٧	4	٧	A	٧	A	∢	4	٧	∢	4	۷	∢	4	٧	۷	٧	٧	۷	⋖	4
全平均	100.0	100.0	1.66	9.66	99.1	100.0	99.1	100.0	100.0	100.0	1.66	99.1	99.1	99.1	1.66	100.0	100.0	1 66	99.1	99.1	99.1	100.0	9 66	100.0	99.1	100.0	99.1	100.0	100.0	100.0	99.1	100.0	9 66	100.0	100.0	100.0	100.0	100.0
有機平均	100.0	100.0	6.86	99.4	6.86	100.0	6.86	100.0	100.0	100.0	6.86	6.86	6.86	6.86	6.86	100.0	100.0	6.86	6.86	6.86	6.86	100.0	99.4	100.0	6.86	100.0	6.86	100.0	100.0	100.0	6.86	100.0	99.4	100.0	100.0	100.0	100.0	100.0
鉛平均	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.001	100.0	100.0	100.0	100.0	100.0	100.0
	100	100	96	100	96	100	96	100	100	100	96	96	96	96	96	100	100	96	96	96	96	100	96	100	96	100	96	100	100	100	96	100	100	100	100	100	100	100
NMF	800				005	800	002	140	800	800	002	002	002	005	005	800	800	002	002	002	002	800		800	002	800	002	140	800	800	002	140		140	800	800	800	800
	00	100	86	96	86	00	86	0	0	100	86	86	86	86	86	100	100	86	86	86	86	0	100	100	86	100	86	100	0	100	86	00	86	0	0	0	0	001
HD	008 10	10	6	6	002 9	008 10	002 9	140 100	008 100	008 10	002 9	002 9	002 9	002 9	002 9	008 10	008 10	002 9	002 9	002 9	002 9	008 100	10	008 10	002 9	008 10	002 9	140 10	008 100	008 10	002 9	140 10	6	140 100	008 100			008 10
ľ)0)0)0	8	17)0)0)0)0	0)0)0)0)()()0)()0	0)0)0)0)0	17)0)0)0	17		17)0	0	ŏ	ŏ
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	86	100	100	100	100	100
TCA	800				002	800	002	140	800	800	005	005	002	002	005	800	800	005	002	002	005	800		800	002	800	005	140	800	800	002	140		140	800	800	800	800
	0	0	0	001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100
1C	100	100	100	10	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		100	100	100	100	100	100	100	100	100	140 100	100	140 100	100			
T	800				005	800	005	140	800	800	005	005	005	005	005	800	800	005	005	005	005	008		008	005	008	005	140	008	008	005	14		14	008	008	008	008
	100	100	86	100	98	100	98	100	100	100	86	98	98	98	86	100	100	86	98	98	98	100	100	100	98	100	98	100	100	100	98	100	100	100	100	100	100	100
MA	800				002	800	002	140	800	800	002	002	002	002	005	800	008	002	002	002	002	008		008	002	008	002	140	008	008	002	140		140	008	008	800	008
H	100	100	100	100	00	00	00	100	00	100	100	00	00	100	100	00	00	100	00	00	00	100	00	00	100	00	00	100	00	00	100	100	00	00	00	100	9	00
HA	008 10	1(1(1(002 100		008 100	008 10		002 100		002 10	002 10	008 100	008 100	002 10	002 100			008 10	100	008 100				140 10		008 100		140 10	100	140 100	008 100	008 10		008 100
)0				0	0	ŏ	1	0	0	0	0	0				0	0	0	0	0	0		0	0	0	0	1	0	0	0	1		1,	0	ŏ	ŏ	ŏ
٧	100	100	100	100	100	100	100	100	100	100	100	100			100		100	100		100	100	100	100		100	100	100	100	100	100	100	100	100	100	100			100
MHA	800				005	800	005	140	800	800	005	002	005	005	005	800	800	005	002	005	005	008		800	005	008	005	140	008	008	005	140		140	800	008	800	008
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
ALA	800					800	005	140		800		\vdash	_	005	005		800	005			005	800				800		140		800	005	140		140		_	800	800
H		100	100	100	100			0	100	100							100	100				0(0(001			100		100	100	0(0(0(100
Pb-B	100	10	10	10		008 100	100	100						100	100				002 100	002 100	100	008 100	100								002 10	140 100	100	140 100	008 100		<u>ن</u>	008 10
PŁ	800				005	0	005	140	800	800	005	005	005	005	005	800	00	005	30	0	005	0		30	30	008	005	140	800	30	30	14		14	30	8	008	ŏ
施設コード	13015	13016	13017	13019	13021	13022	13024	13026	13028	13035	13036	13038	13039	13045	13049	13051	13052	13053	13055	13056	13061	13063	13064	13067	13071	13077	13078	13079	13080	13083	13084	13088	13093	13101	13103	13107	13108	13109
No.	9/	77	78	79	80	81	82	83	84	82	98	87	88	88	06	91	95	93	94	92	96	6	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113

ランク	٧	⋖	⋖	A	٧	٨	۷	۷	۷	4	۷	۷	A	A	⋖	۷	۷	۷	A	٧	4	A	A	⋖	⋖	٧	⋖	٧	⋖	4	⋖	۷	۷	٧	4	A	A	⋖
全平均	100.0	100.0	100.0	100.0	8.66	100.0	99.1	100.0	100.0	100.0	100.0	100.0	98.9	6.96	100.0	6.96	100.0	100.0	6.96	100.0	100.0	100.0	100.0	99.1	100.0	100.0	100.0	100.0	100.0	99.1	99.1	100.0	100.0	6.96	100.0	100.0	100.0	100.0
H	0	0	0.	0.	7	0	6	0	0	0	0	0	9	9	0	9	0	0	9	0	0.	0	0	6	0.	0.	0.	0	0	6	6	0	0	9	0	0	0	0
有機平均	100.0	100.0	100.0	100.0	99.7	100.0	98.9	100.0	100.0	100.0	100.0	100.0	98.6	98.6	100.0	98.6	100.0	100.0	98.6	100.0	100.0	100.0	100.0	98.9	100.0	100.0	100.0	100.0	100.0	98.9	98.9	100.0	100.0	98.6	100.0	100.0	100.0	100.0
鉛平均	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	91.0	100.0	91.0	100.0	100.0	91.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	91.0	100.0	100.0	100.0	100.0
	100	100	100	100	100	100	96	100	100	100	100	100	96	94	100	94	100	100	94	100	100	100	100	96	100	100	100	100	100	96	96	100	100	94	100	100	100	100
NMF	140	800	140	800	162	800	002	140	980	800	800	800	137	900	140		800	800	900	800	140		140	002	800	800	800	800	800	002	002	800	800	900	800	800	Щ	800
H	100	100	100	100	100	100	86	100	100	100	100	100	98	100	100	100	100	100	100	100	100	100	100	86	100	100	100	100	100	86	86	00	100	100	100	100	100	100
日	140	008	140	008	162 1	008	002	140	036 1	008	008	008	137	000	140	1	1 800	008	006	008	140	1	140	005	008	008	008	008	1 800	005	005	008	008	006	1 800	008		1 008
	100	100	100	00	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
TCA	140 10	008 10	140 10	008 10	162	008 10	002 10	140 10	036 10	008 10	008 10	008 10	37 10	006 10	140 10	10	008 10	008 10	006 10	008 10	140 10	1(140 10	002 10	008 10	008 10	008 10	008 10	008 10	002 10	002 10	008 10	008 10	006 10	008 10	008 10	Ш	008 10
													1			(
TTC	140 100	100	140 100	008 100	162 100	008 100	100	100	100	008 100	008 100	008 100	37 98	100	140 100	100	008 100	008 100	006 100	008 100	140 100	100	140 100	100	008 100	008 100	008 100	100	008 100	100	100	008 100	008 100	006 100	100	008 100	ш	008 100
⊥		800					005	140	980				_	900										005				800		005	005				800			
4	0 100	100	001 0	8 100	2 100	100	2 98	001 0	100	100	100	100	7 100	100	100	100	100	100	001	8 100	001 0	100	100		100	8 100	100	8 100	8 100	2 98	2 98	100	100	5 100	8 100	8 100	1	8 100
MA	140	800	140	008	162	800	005	140	036	800	800	800	137	900	140		800	800	900	008	140		140	005	008	008	008	008	008	005	005	800	800	900	008	008	140	008
	100	100	100			100	100	100	100	100	100	100	100	86	100	86	100	100		100	100		100	100	100		100	100	100	100	100	100	100					_
HA	140	800	140	008	162	800	005	140	980	800	800	800	137	900	140		800	800	900	008	140		140	005	800	008	800	008	008	005	005	800	800	900	008	008	140	008
4	100	100	100	100	100	100	100	100	100	100	100	100	86	86	100	86	100	100	86	100	100	100	100	100	100	100	100	100	100	100	100	100	100	86	100			100
MHA	140	800	140	008	162	800	005	140	980	800	800	800	137	900	140		800	800	000	008	140		140	005	800	008	800	008	008	005	005	800	008	900	008	008	140	008
_	100	100	100	100	100	100	100	100	100	100	100	100	100	88	100	88	100	100	88	100	100	100	100	100	100	100	100	100	100	100	100	100	100	88	100	100	100	100
ALA	140	800	140	008	162	800	005	140	980	800	800	800	137	000	140		800	800	000	008	140		140	005	008	008	008	008	008	005	005	800	800	006	008	008	140	008
}	100	100	100	100	100	100	100	100	100	100	100	100	100	94	100	94	100	100	94	100	100	100	100	100	100	100	100	100	100	100	100	100	100	94	100	100	100	100
Pb-B	140	800	140	008	162	800	005	140	980	800	800	800	137	900	140		800	800	900	008	140		140	005	800	800	800	008	800	005	005	800	800	900	800	008	140	008
施設コード	13115	13120	13125	13134	13135	13136	13179	13181	14001	14002	14003	14004	14005	14006	14007	14010	14018	14022	14023	14025	14026	14030	14042	15001	15004	15006	15007	15008	15010	15011	15012	16002	16004	16005	16006	16008	17001	17003
No. 海		115	116	117	118	119	120		122	123	124		126			129		131					136	137	138	139	140	141	142	143	144	145		147		149	150	151

ランク	۷	٧	4	٨	٧	⋖	٧	۷	⋖	٧	٧	۷	٧	٧	⋖	٧	٧	4	٧	A	٧	A	A	4	۷	٧	4	٧	۷	4	٧	٧	4	٧	۷	⋖	∢	⋖
全平均	8.66	100.0	6.96	100.0	100.0	100.0	99.3	99.3	100.0	99.3	94.0	100.0	100.0	93.8	66	100.0	99.1	100.0	94.0	100.0	99.1	100.0	99.3	100.0	99.1	94.0	99.1	94.0	8.66	99.1	94.0	99.1	94.0	100.0	94.0	100.0	100.0	100.0
有機平均 3	2 66	100.0	986	100.0	100.0	100.0	99.1	1.66	100.0	99.1	92.3	100.0	100.0	91.7	1.66	100.0	6.86	100.0	92.3	100.0	6.86	100.0	99.1	100.0	6.86	92.3	6.86	92.3	2 66	6.86	92.3	6.86	92.3	100.0	92.3	100.0	100.0	100.0
鉛平均「有	100.0	100.0	91.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	100	100	94	100	100	100	96	96	100	96	92	100	100	92	96	100	96	00	92	100	96	100	96	100	96	92	96	92	100	96	92	96	92	100	92	100	100	100
NMF	1		900	140 1	140	140 1	127	127	140		880	008	008	880	127	140 1	002	140	880	008	002	008	127	140 1	002	880	002	088	060	002	880	002	880	140 1				008
	100		100	100	100	100	86 /	98	100	86	99 8	100	100	3 66	86 /	100	6 38	100	99 8	100		100		100	98	3 66	98	3 66	100	98	99 8	6 38	99 8	100	99			100
HD		008	900	140	140	140	127	127	140		880	008	008	₹ 088	127	140	005	140	۷ 088	008	005	008	127	140	005	₹ 088	005	v 088	060	005	v 088	005	v 088	140	4	140	800	008
	86	100	100	001	100	100	100	100	100	100	∇ 96	100	100	∇	100	100	100	001	∇ 96	100	100	100	100	100	100	∇ 96	00	∇ 96	00	100	∇ 96	00	∇ 96	00	∇ 96	100	100	100
TCA			006 1	140 1	140 1	140 1	27 1	127 1	140	1	880	008	008		27 1	140 1	002	140	880	008	002 1	008 1	127 1	140 1	002	880	002	088	060	002	880	002	880	140		140 1	اللل	008
		0	0	-	_	1	1	1	1		0	0	0		1	1	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1		1	0	_
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
TTC		008	900	140	140	140	127	127	140		088	008	008	088	127	140	005	140	088	008	002	008	127	140	002	088	002	088	060	002	088	005	088	140		140	800	008
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	86	100	100	100	98	100	100	100	98	100	86	100	100	86	100	86	100	100	100	100	100	100
MA		008	900	140	140	140	127	127	140		088	008	008	088	127	140	002	140	088	008	002	008	127	140	002	088	002	088	060	002	088	002	088	140		140	800	008
Н	100	100	86	100	100	100	100	100	100	100	95	100	100	95	100	100	100	100	95	100	100	100	100	100	100	95	100	92	100	100	95	100	95	100	95	100	100	100
НΑ		800	900	140	140	140	127	127	140		088	800	800	088	127	140	005	140	ш		005	800	127	140	005	088	005	088	060	005	088	005		140		140	800	800
H	00	100	86	001	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	86	100	100	100	100	100	100	100	100	00
MHA	Ė		900	. 140	140	140	127	127	. 140		. 880			. 880	127		. 700	. 140	. 880			. 800				. 880		. 880				. 005		140			800	800
H	0		88	0					0	0								0																	0			
ALA	100			140 10			100		140 100	100		100			100			140 100				100				100		100				100	100	140 100	100		ш	100
٨	Н	008	900	14	140	140	127	127	14		90	800	008	088	127	140	005	14	088	00	005	008	12	14	005	088	005	088	060	005	088	005	088	14		140	008	9
3	100	100	94	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Pb-B		800	900	140	140	140	127	127	140		088	800	008	088	127	140	005	140	088	800	005	008	127	140	005	088	005	088	060	005	088	005	088	140		140	800	900
施設コード	18001	18003	20001	20003	20004	20005	21001	21002	21004	21005	21006	21015	22001	22002	22003	22004	22006	22007	22011	22015	22017	22019	22023	23001	23002	23003	23005	23006	23007	23008	23009	23011	23012	23015	23016	23018	23019	23022
	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189

ランク	A	⋖	∢	⋖	∀	⋖	⋖	∢	⋖	⋖	∢	4	۷	٧	۷	⋖	۷	⋖	⋖	٧	۷	⋖	⋖	⋖	⋖	⋖	∢	⋖	⋖	∢	۷	⋖	∢	⋖	∢	۷	⋖	⋖
H																																						
全平均	100.0	94.0	100.0	94.0	99.1	94.7	94.0	99.8	100.0	100.0	99.8	94.0	99.3	100.0	99.3	99.8	98.9	99.3	99.8	99.8	98.9	100.0	8 66	92.9	100.0	99.8	99.8	98.9	99.8	99.8	100.0	100.0	100.0	100.0	100.0	99.3	100.0	100.0
有機平均	100.0	92.3	100.0	92.3	98.9	93.1	92.3	99.7	100.0	100.0	99.7	92.3	99.1	100.0	99.1	99.7	98.6	99.1	99.7	99.7	98.6	100.0	2 66	92.8	100.0	99.7	99.7	98.6	99.7	99.7	100.0	100.0	100.0	100.0	100.0	99.1	100.0	100.0
鉛平均	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	93.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	100	92	100	92	96	94	92	100	100	100	100	92	96	100	96	100	100	96	100	100	100	100	100	99	100	100	100	100	100	100	100	100	100	100	100	96	100	100
NMF	140	880	800	880	002		880	060	800	140	162	088	127	800	127	162	035	002	162			800	140		140		060	035	140	060	800	030		140	800		800	
L						4							8							0	4			∇ 8		0							С					
D	0 100		8 100	8 66	2 98	64	99 8	0 100	8 100	0 100	100	8 66	7 98	8 100	7 98	100	5 94	2 98	100	100	94	8 100	001 0	86	40 100	100	0 100	5 94	0 100	0 100	8 100	0 100	100	0 100	8 100		ļ	100
H	140	880 🗸	008	V 088	005	∇	880 V	060	008	140	162	∇ 088	127	008	127	162	035	005	162			008	140		14		060	035	140	060	008	030		140	008	005	800	_
	100		100	7 96	100	7 96	96	100	100	100	86	7 96	100	100	100	86	100	100	86	86	100	100	100		100	100	100	100	100	100	100	100		100	100	100	100	100
TCA	140	880	800	880	002		880	060	800	140	162	088	127	800	127	162	035	002	162			800	140		140		060	035	140	060	800	030		140	800	002	800	
			((((((((9	((9	(((9		(
O.) 100		3 100	3 100	100	100	3 100	100	3 100	100	2 100	3 100		3 100	100	100	96	100	100	100	96	3 100	100) 100	100	100	96	100	100	1	100		100	3 100			100
L	140	088	008	088	005		088	060	008	140	162	088	127	008	127	162	035	005	162			008	140		140		060	035	140	060	008	030		140	008	005	800	_
H	100	100	100	100	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
MA	140	880	800	088	002		880	060	800	140	162	088	127	800	127	162	035	127	162			800	060		140		060	035	060	060	800	030		140	800	127	800	
	0	2	0	2	0	8	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HA	0 100		8 100	-		-			8 100	0 100	2 100	8 92			100		5 100	100		100	100		0 100	100	0 100	100		5 100	0 100		8 100	0 100	100	0 100				100
ľ	140	088	800	088	005		088	060	008	140	162	088	127	008	127	16	035	127	162			800	060		140		060	035	060	60	008	030		140	800	127	800	_
1	100	100	100	100	100	100	100	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100	86	100	100	98	98	100	98	98	100	100	100	100	100	100	100	100
MHA	140	880	800	880	002		880	060	800	140	162	088	127	900	127	162	035	127	162			800	060		140		060	035	060	060	800	030		140	800	127	800	
H	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	00	92	100	100	100	100	100	100	100	100	100	100	100	100	100	00
ALA	140 1			088	002 1	1	088							008	127 1	162 1	035 1	002		_		008	140		140 1			035 1		060		030 1	_	140		002 1		
Ĺ																																						╛
Ą	100			100		100	100	100	100		100	100		100	100	100	100	100	100	100	100		100	94	100	100	100	100	100	100		100	100	100	100		i.	100
Pb-B	140	880	008	088	005		880	060	008	140	162	088	127	008	127	162	035	005	162			008	140		140		060	035	140	060	008	030		140	800	005	300	\dashv
<u>~</u>	4	9	6	0	5	3	7	8	0	2	2	9	3	œ	1	ø.	5	ဗ	9	_	_	5	က	4	2	9	6	2	0		5	က	9		6	0	4	2
施設コード	23024	23026	23029	23030	23032	23033	23037	23038	23040	23042	23055	23056	23063	23068	24001	24008	25002	25003	25006	25011	26001	26002	26003	26004	26005	26006	26009	26012	26020	27001	27002	27003	27006	27007	27009	27010	27014	27015
No		191	192	193	194	195	196	197	198	199	200	201	202	203	204	202	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227

						_	1	1																														_
ランク	٧	Α	٧	٧	Α	۷	∢	∢	Α	Α	Α	٧	٧	٧	Α	Α	Α	۷	٧	Α	٧	٧	Α	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	∢
全平均	100.0	99.3	8.66	99.1	100.0	100.0	99.1	6 96	100.0	100.0	99.1	8.66	99.8	99.1	99.1	6'96	99.1	100.0	100.0	100.0	99.1	100.0	99.1	99.1	99.1	6 96	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.1	100.0	100.0
有機平均	100.0	99.1	2.66	6.86	100.0	100.0	6.86	986	100.0	100.0	6.86	2.66	99.7	98.9	6.86	986	6.86	100.0	100.0	100.0	6.86	100.0	6.86	6.86	6.86	986	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	98.9	100.0	100.0
鉛平均	100.0	100.0	100.0	100.0	100.0	0.001	100.0	91.0	100.0	100.0	0.001	100.0	100.0	100.0	100.0	91.0	0.001	0.001	100.0	0.001	100.0	100.0	100.0	100.0	100.0	91.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
П	100	96	100	96	100	100	96	94	100	100	96	100	100	96	96	94	96	100	100	100	96	100	96	96	96	94	100	100	100	100	100	100	100	100	100	96	100	100
NMF	800	005	060	005	800	800	005	900	140	800	005	162	060	005	005	900	005	800	800	800	005	140	005	005	005	900	800	800	140	140	800	800	800	800	800	002	800	800
Н	100	86	100	86	100	100	86	100	100	100	86	100	100	86	86	100	86	100	100	100	86	100	86	86	86	100	100	100	100	100	100	100	100	100	100	86	100	100
Н	1 800	002	060	002	008	1 800	002	1 900	140	1 800	002	162	060	002	002	1 900	002	1 800	1 800	1 800	002	140	002	002	002	000	008	1 800	140	140	1 800	1 800	1 800	1 800	1 800	002		1 800
												~																										
۲	100	100	100	100	100	100	100	100	100	100	100	98	100	100	100	100	100	100	100	100	100		100	100	100	100	100	100	100	100	100	100	100	100	100			3 100
TCA	008	005	060	005	800	800	005	900	140	800	005	162	060	005	005	900	005	800	800	800	005	140	005	005	005	900	008	008	140	140	008	008	008	008	008	005	800	008
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
TTC	008	002	060	002	800	800	005	900	140	800	002	162	060	002	005	900	002	800	008	800	005	140	002	005	002	900	008	008	140	140	008	008	008	008	008	002	008	008
	100	100	100	86	100	100	86	100	100	100	86	100	100	86	86	100	86	100	100	100	86	100	86	86	86	100	100	100	100	100	100	100	100	100	100	86	100	100
MA	800	127	060	002	800	800	005	900	140	800	005	162	060	002	002	900	005	800	800	800	005	140	002	005	002	900	800	800	140	140	800	080	080	800	800	002	800	080
Н	100	100	100	100	100	100	100	86	100	100	100	100	100	100	100	86	100	100	100	100	100	100	100	100	100	86	100	100	100	100	100	100	100	100	100	100	100	100
Η	1 800			005			002	900	140	1 800	005	162			002	900		1 800		1 800	005	140			005	900		1 800	140	140	1 800	080		1 800	ш	002		080
H	00	100	86	00	100	100	100	86	001	100	001	100	98	100		86	100	001	100	100	100	100	100	100	00			100	100	100	100	001	100	100	100	100	100	00
MHA	008	1		002	008	1 800	002		140		_	162 1		002	002		002	1 800		008		140 1			1		1	008	140			080		008		002 1	1	080
ALA	100	Ċ		100	100	100	100	88 91	ļ	100	100	100	0 100	100	100		100	100	100	100	100				ļ	16 88	1	100	.0 100	.0 100	100	100	100	100	100			100
⋖	800	005	060	005	800	800	005	900		800	005	162	060	005	005	900	005	800	800	800	005	140	00	005	005	900	800	800	140	140	800	800	800	800	800	005		008
В	_		ļ	100	100	100	100		l	100	100	100		100	100		100	100	100	100	100				100		1	100		100	100	100	100	100		_		100
Pb-B	008	005	060	005	800	800	005	900	140	800	005	162	060	005	140	900	005	800	800	800	005	140	005	005	005	900	008	008	140	140	800	800	800	008	008	005	800	800
施設コード	27018	27020	27023	27028	27038	27041	27042	27045	27046	27048	27051	27062	28001	28002	28003	28004	28007	28011	28014	28015	28016	28017	28018	28019	28022	28024	29002	29004	30004	30005	30008	31002	31003	31005	32001	33001	33002	33004
No.		229		231				235				239	_		242		244	245				249				253												

ランク	A	٧	٧	4	A	۷	۷	٧	4	4	٧	4	A	٧	A	4	A	۷	4	٧	Α	V	A	4	4	٧	4	4	٧	4	4	٧	4	٧	٧	Α	∢	4
全平均	100.0	100.0	100.0	100.0	100.0	100.0	99.3	100.0	100.0	99.3	99.3	99.3	99.1	8 66	99.1	100.0	100.0	99.1	99.1	6.96	100.0	100.0	100.0	100.0	100.0	99.1	100.0	100.0	100.0	99.1	100.0	99.1	100.0	99.1	6.96	100.0	100.0	8.66
有機平均	100.0	100.0	100.0	100.0	100.0	100.0	99.1	100.0	100.0	99.1	99.1	99.1	98.9	99.7	6.86	100.0	100.0	6.86	6.86	986	100.0	100.0	100.0	100.0	100.0	98.9	100.0	100.0	100.0	6.86	100.0	6.86	100.0	98.9	98.6	100.0	100.0	100.0
鉛平均	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	91.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	91.0	100.0	100.0	99.0
	100	100	100	100	100	100	96	100	100	96	96	96	96	100	96	100	100	96	96	94	100	100	100	100	100	96	100	100	100	96	100	96	100	96	94	100	100	100
NMF	800	800	800		800	030	112	140	800	112			002	060	002	800	800	005	002	900	140	800	800	800	800	002	140	140	140	002	800	002	800	002	900	800	800	
	00	100	0	00	0	0	86	0	100	86	86	86	86	100	86	100	0	86	86	0	00	0	0	0	100	86	0	0	0	86	100	86	001	86	0	00	9	00
HD	008 10	008 10	008 100	10	008 100	030 100	112 9	140 100	008 10	112 9	6	6		090 10	002 9	008 10	008 100	002 9	002 9	006 100	140 100		008 100	008 100	008 10	002 9	140 100	140 100	140 100	002 9	008 10	002 9	008 10	002 9	006 100		008 100	10
ľ)0	00)0		00	03	11	17	0	11			00	30	0	0	00)0	0	00	17	0	00	0	0	00	17	17	17	0	0	00	0	00	00	00	8	_
H	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
TCA	140	800	800		800	030	112	140	800	112			002	060	005	800	800	002	002	900	140	800	800	800	800	002	140	140	140	002	800	002	800	002	900	800	800	
				0		0		0	0	0	0	0))		0		0	0	_))		0	0	_	0	0	_	0	0	0	0	0	0)		
ပ	100		100	100	100	100	100	100	3 100	100	100	100		100	100	3 100	100	100	100	100			100	3 100	3 100	100	100	100	100	100	3 100	100	3 100	100	100		ì	100
TT	800	008	800		008	030	112	140	008	112			002	060	005	008	008	005	005	900	140	008	008	008	008	005	140	140	140	005	008	005	008	005	900	008	800	_
	100	100	100	100	100	100	100	100	100	100	100	100	98	100	86	100	100	86	86	100	100	100	100	100	100	98	100	100	100	86	100	86	100	98	100	100	100	100
ΜA	140	800	800		080	030	112	140	800	112			002	060	005	800	800	002	002	900	140	800	800	800	800	002	140	140	140	002	800	002	800	002	900	800	800	
				(((((()			((3)	0		((((((((3)		
⋖				100) 100		100		3 100	100	100	100	_		100	3 100	3 100	100	2 100				3 100	3 100	3 100	2 100	100	100	100	100	3 100	100	3 100	100			_	100
HA	140	800	800		080	03(112	140	800	112			005	060	005	008	008	005	005	00	140	008	300	008	008	002	140	140	140	005	008	005	008	005	900	008	800	
	100	100	100	100	100	100	100	100	100	100	100	100	100	98	100	100	100	100	100	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100	86	100	100	100
MHA	140	800	800		080	030	112		800	112			002		002	\vdash	800	005		900		800	800	800	800	005	140	140	140	002	800	005		005	900	800	800	
				0						0	0	0																										0
ALA				100			2 100				100	100	_	100				100				100				100	\vdash	100				100		100			100	1
⋖	140	008	800		800	030	112	140	800	11			002	060	005	008	800	005	005	900	140	8	00	800	008	005	140	140	140	005	008	005	800	005	900	008	8	\dashv
~	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	94	100	100	100	100	100	100	100	100	100	100	100	100	100	100	94	100	100	98
Pb-B	800	800	800		800	030	112	140	800	112			002	060	005	800	800	005	005	900	140	800	008	800	800	005	140	140	140	005	800	005	800	005	900	800	800	
ĭ																																					\prod	\exists
施設コード				34002	34003	34004		34009				35001						38006										40007	40009		40015							41001
No.	566	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303

ランク	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	٧	Α	Α	٧	٧	Α	٧
全平均	100.0	100.0	100.0	99.1	99.1	100.0	100.0	8 66	100.0	100.0	100.0	100.0	99.1	99.1	100.0	100.0	100.0	98.9	100.0
有機平均	100.0	100.0	100.0	6.86	6.86	100.0	100.0	7.66	100.0	100.0	100.0	100.0	6'86	6.86	100.0	100.0	100.0	98'6	100.0
鉛平均	100.0	100.0	100.0	100.0	0.001	100.0	100.0	0.001	100.0	100.0	0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
П	100	100	100	96	96	100	100	100	100	100	100	100	96	96	100	100	100	96	
NMF	140	800	140	002	005	140	140		800	800	140	140	005	005	140	140	800		
	100	100	100	86	86	100	100	100	100	100	100	100	86	86	100	100	100	86	
뮈	140	800	140	005	005	140	140		800	800	140	140	005	005	140	140	800		
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
TCA	140	800	140	002	002	140	140		800	800	140	140	005	005	140	140	800		
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	86	
TTC	140	800	140	005	005	140	140		800	800	140	140	005	005	140	140	800		
	100	100	100	86	86	100	100	100	100	100	100	100	86	86	100	100	100	100	
MA	140	800	140	002	005	140	140		800	800	140	140	005	005	140	140	800		
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
HA	140	800	140	005	005	140	140		800	800	140	140	005	005	140	140	800		
L	100	100	100	100	100	100	100	86	100	100	100	100	100	100	100	100	100	86	100
MHA	140	800	140	005	005	140	140		800	800	140	140	005	005	140	140	800		
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
ALA	140	800	140	005	005	140	140		800	800	140	140	005	005	140	140	800		
	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
Pb-B	140	800	140	005	005	140	140		800	800	140	140	005	005	140	140	800		
施設コード	42001	42002	42003	43001	43003	43004	43006	44002	45002	46001	46004	47001	47002	47005	47006	48069	48108	48500	48572
No	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322

表IV-2 A参加施設解析結果一覧 表IV-2-1 Pb-B

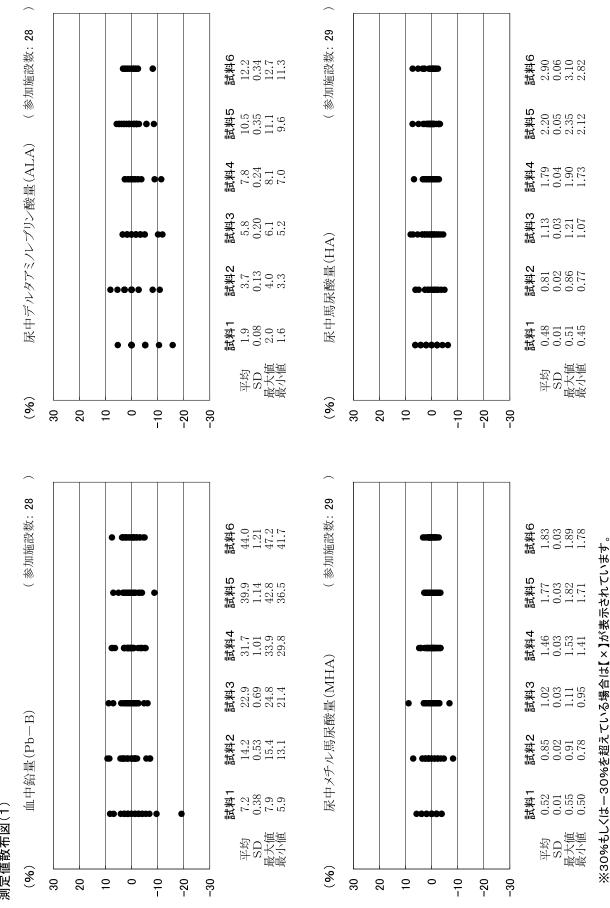
	梅笛	‡	98	100	100	100	100	100	100	100	100	100	94	100	100	100	100	100	100	100	94	100	100	100	100	100	100	86	100	100
	\$	ĸ	49	20	20	20	20	20	20	20	20	20	47	20	20	20	20	20	20	20	47	20	20	20	20	20	20	49	20	20
	4		4	2	5	5	5	5	5	5	5	5	4	2	2	2	5	5	5	5	4	2	5	5	2	5	D	4	2	2
	·	υ	4	4	4	4	4	4	4	4	4	4	3	4	4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4
	7	3	4	4	4	4	4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Ű		ن -	9 !	9 !	9 !	9 !	9 !	9 !	9 .	9 !	9 !	9 !	9 !	9	9 !	9 !	9 !	9 !	9 !	9 !	9	9 !	9 !	9 !	9 !	9 !	9	9 .	9	9
角	_	, ק	9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	5 6	9 9	9 9	9 9	9 9	9 9	9 9	9 9	5 5	9 9	9 9	9 9	9 9	9 9	9 9	9	9 9	9 9
칾	(9		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	(d	9	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	(Ð	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	@	9	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	6	9)	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	0	€	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	Φ	PI-2	0.025	0.029	0.016	0.014	0.021	0.019	0.017	0.066	0.022	0.017	0.077	0.016	0.020	0.016	0.009	0.021	0.056	0.020	0.075	0.017	0.015	0.025	0.014	0.035	0.013	0.026	0.007	0.011
	р	PI-1	0.026	0.023	0.013	0.013	0.020	0.016	0.019	0.057	0.019	0.011	0.076	0.015	0.014	0.019	0.007	0.018	0.047	0.022	0.061	0.013	0.011	0.029	0.012	0.036	0.016	0.025	0.008	0.009
分析	၁	$tan \theta$	1.029	1.002	1.009	0.995	1.018	1.012	0.956	1.026	0.998	1.001	1.071	1.015	1.000	0.957	1.008	0.997	0.970	1.024	0.951	966.0	0.982	1.037	1.004	1.039	0.964	1.018	0.992	0.994
唱	q	再現性	1.064	0.467	0.475	0.401	0.129	0.563	0.385	0.527	0.521	0.311	0.174	0.304	0.536	0.344	0.249	0.439	0.201	0.322	1.026	0.343	0.215	0.143	0.452	0.495	0.361	0.924	0.201	0.361
回	а	傾き 再	1.027	1.00.1	1.008	0.995	1.018	1.011	0.955	1.025	0.998	1.001	1.071	1.015	1.000	0.957	1.008	0.997	0.970	1.024	0.949	0.995	0.982	1.037	1.003	1.038	0.964	1.017	0.992	0.994
							0.049		0.820	0.839	0.439		0.149	0.005		0.755		0.481					0.498		-0.175	-0.046	0.645		0.055	0.160
	1	切片	-0.824	-0.565	-0.088	-0.022	0.0	-0.559	3.0	3.0	7.0	-0.202	0.1	0.0	-0.180	0	-0.162	7'0	-0.456	-0.062	-0.262	-0.125	7'0	-0.213	-0.1	-0.0	0.0	-0.814	0.0	0.1
	9	43.9	45.4	43.0	44.8	43.3	44.8	44.3	42.5	45.2	43.5	43.4	47.2	44.9	43.0	42.5	44.2	44.5	41.9	45.2	41.7	43.5	43.7	45.5	43.7	45.3	42.9	44.8	43.6	44.0
結果	2	40.0	40.2	40.2	39.9	39.7	40.8	40.1	38.8	42.0	40.8	39.8	42.8	40.5	40.2	38.9	39.8	39.8	38.4	40.4	36.5	39.4	39.6	41.1	39.8	41.3	38.8	39.9	39.5	39.5
逆定	4	31.5	29.8	30.7	31.2	32.0	32.0	30.4	31.5	33.8	32.4	31.7	33.9	31.6	31.9	31.3	31.9	31.9	30.4	32.4	29.9	31.8	31.3	32.4	32.2	33.5	31.5	30.2	31.6	31.5
鉛量	3	22.8	22.5	22.2	23.0	22.5	23.2	22.2	22.8	24.4	23.2	22.9	24.8	23.0	22.5	22.9	22.8	23.7	21.7	23.3	22.8	22.4	23.2	23.5	22.3	23.2	22.8	21.4	22.6	23.3
自	3	14.1	13.9	13.3	13.9	14.0	14.6	13.9	14.3	15.4	14.5	13.8	15.3	14.6	14.1	14.3	14.1	147	13.1	14.5	13.1	14.0	14.4	14.5	13.9	14.6	14.3	13.9	14.1	13.9
	①	7.3	7.1	7.0	9.7	7.1	7.4	7.1	7.5	7.9	7.5	6.9	7.8	7.4	8.9	7.4	7.1	7.4	9.9	7.3	5.9	7.0	7.5	7.3	7.2	7.5	7.4	7.2	7.2	7.4
	測定方法			1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1-1	1–1
	心ではつい	試料濃度	03001	07002	60080	11006	12002	13016	13017	13019	13064	13093	14010	14030	18001	21005	23016	23033	25011	26001	26004	26006	27006	27015	34002	34015	35001	41001	44002	48500
		試	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28

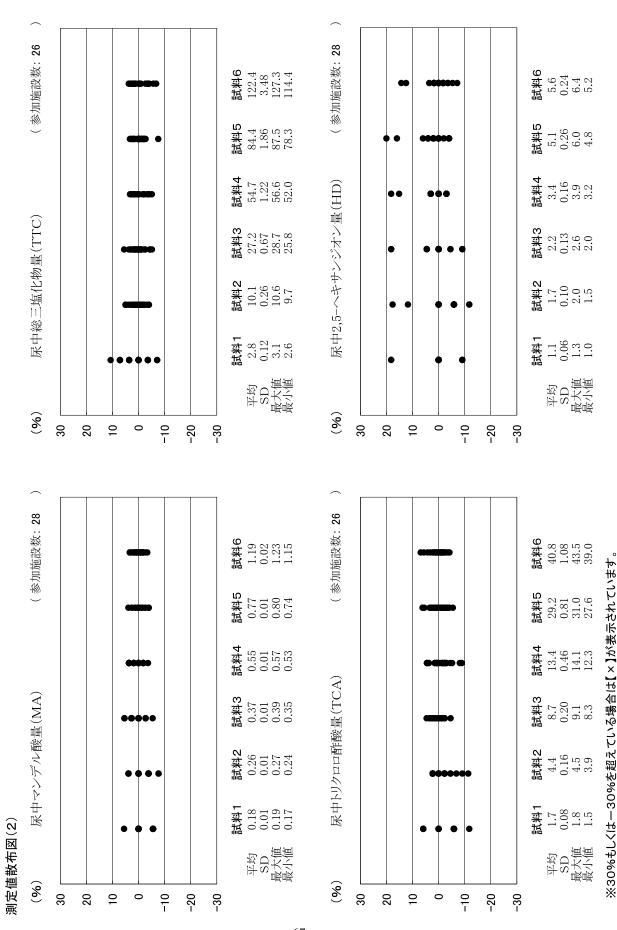
		英価	ŧ K	100	100	100	100	100	100	100	100	100	100	88	100	100	100	100	100	100	100	92	100	100	100	100	100	100	100	100	100
	-	#	_	20	20	20	20	20	20	20	20	20	20	44	20	20	20	20	20	20	20	46	20	20	20	20	20	20	20	20	20
	ŀ	(I	_	4	4	4	4	4	4	4	4	4	4	2	4	4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4
	ŀ	7		4 4	4 4	4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	3	7 4	4	4 4	4 4	4 4	7 4	4 4	8	4 7	7	7	7	7	4 4	4 4	4 4	4 4
4	ı	c)	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	2	9	9	9	9	9	9	9	9	9
Ħ	=	_		9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Ė.	<u></u>	(G	_	4 6	4 6	4 6	4 6	4 6	4 6	4 6	4 6	4 6	4 6	4 5	4 6	4 6	4 6	4 6	4 6	4 6	4 6	4 5	4 6	4 6	4 6	4 6	4 6	4 6	4 6	4 6	4 6
	ŀ	(c	_	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	l	9	Ð	4	4	4	4	4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	ŀ	•	_	4	4	4	4	4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	L	©		4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4
F																															
		Φ	PI-2	0.014	0.003	0.013	0.014	0.008	0.012	0.020	0.030	0.027	0.010	0.106	0.010	0.017	0.022	0.020	0.003	0.026	0.009	0.091	0.014	0.010	0.026	0.016	0.022	0.029	0.022	0.010	0.023
		р	PI-1	0.019	0.005	0.019	0.014	0.012	0.017	0.024	0.026	0.033	0.012	0.092	0.014	0.012	0.028	0.017	0.005	0.019	0.012	0.088	0.017	0.009	0.024	0.017	0.026	0.026	0.017	0.009	0.024
1.	Ж.	၀	$tan \theta$	1.034	0.987	1.037	0.981	1.023	0.993	1.033	0.983	0.962	0.988	0.945	1.027	0.998	1.048	0.980	1.002	0.997	1.018	0.921	0.980	0.992	0.979	0.977	1.035	1.024	0.999	0.984	1.024
	· 里		世.	0.146	0.070	0.149	0.077	0.038	0.214	0.083	0.034	0.184	0.095	0.176	0.078	0.084	0.176	0.160	0.070	0.056	980'0	0.049	0.063	0.109	0.064	0.105	0.152	0.126	0.110	0.055	0.112
0	1	q	再現性																												
		а	傾き	1.033	286'0	1.036	186'0	1.023	766'0	1.033	£86'0	196'0	286'0	0.944	1.026	866'0	1 047	086'0	1.002	266'0	1.018	176'0	086'0	166'0	8/6'0	9/6'0	1.035	1.024	666'0	0.984	1 023
		1	切片	-0.168	090'0	-0.122	0.069	-0.079	0.075	-0.065	-0.061	0.038	0.005	-0.254	980'0-	-0.070	-0.132	0.194	-0.016	-0.113	-0.076	-0.059	0.026	0.094	-0.015	0.083	-0.061	0.015	-0.107	0.081	0.003
+*	Æ	9	12.3	12.6	12.1	12.5	12.2	12.5	12.0	12.6	12.0	12.1	12.2	11.3	12.6	12.3	12.7	12.1	12.4	12.2	12.4	11.3	12.1	12.2	12.0	12.2	12.6	12.6	12.2	12.2	12.7
	河(2	10.5	10.8	10.5	11.0	10.3	10.7	10.8	10.9	10.3	6.6	10.3	6.6	9.01	10.3	11.1	10.6	10.4	10.3	10.7	9.6	10.3	10.5	10.3	10.2	11.0	10.9	10.4	10.4	10.6
#H	1	4	7.9	7.8	7.9	8.0	7.8	8.0	7.9	8.0	7.7	9.7	7.9	7.0	8.1	7.8	7.9	8.0	7.9	7.8	8.0	7.2	7.8	8.1	7.7	7.8	7.9	7.9	7.8	7.8	8.1
1 1	\	(3)	5.9	5.8	5.9	5.9	5.8	5.9	0.9	0.9	2.7	5.6	2.7	5.2	5.9	5.8	0.9	5.9	5.9	5.7	5.8	5.3	5.7	5.9	2.7	5.8	6.1	6.1	2.6	5.9	0.9
1		3	3.7	3.7	3.7	3.7	3.8	3.7	3.7	3.8	3.6	3.7	3.7	3.3	3.7	3.7	3.8	4.0	3.7	3.6	3.7	3.4	3.7	3.8	3.7	3.8	3.8	3.8	3.7	3.8	3.9
î -	-	0	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.8	1.9	1.9	1.6	1.9	1.8	1.9	1.9	1.9	1.8	1.9	1.7	1.9	1.9	1.8	1.9	1.9	2.0	1.8	1.9	1.9
<u></u>	:	測定方法			3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2	3–2
XIV-2-2 ALA	施設CD		濃度	03001	07002	60080	11006	12002	13016	13017	13019	13064	13093	14010	14030	18001	21005	23016	23033	25011	26001	26004	26006	27006	27015	34002	34015	35001	41001	44002	48500
-¥I\-	K S N		試料濃度	1	2 0	3 0	4 1	5 1	6 1	7 1	8 1	9 1	10	=	12 1	13 1	14 2	15 2	16 2	17 2	18 2	19 2	20 2	21 2	22 2	23 3	24 3	25 3	26 4	27 4	28 4
	-		_																												

トメモ	1)	尿酸量	兩	记器	**			四	少								丰	匣	岸			
_		(e)	4	2	9	l	Ø	q	O	Ф	Φ	(•	6	•	9	Η,	4				如
0.85	ا∴ا	1.02	1.46	1.77	1.83	切片	傾き	再現性	tan $ heta$	PI-1	PI-2	\ni	9			0	מ	Ω	ပ	e D	П	英
0.85	-	1.05	1.52	1.76	1.87	-0.002	1.018	0.029	1.019	0.019	0.016	4	4	4	4	4 4	9	2	9	4 4	. 49	86 6
98'0	-	101	1 44	1.76	1.84	-0.007	1.001	0.014	1.002	600'0	0.011	4	4	4	4	4 4	9	9	9	4 4	. 20	100
98.0	-	1.01	1.45	1.77	1.84	-0.002	1.001	0.010	1.002	0.005	900'0	4	4	4	4	4 4	9	9	9	4 4	. 50	0 100
98.0	-	1 02	1.45	1.79	1.85	-0.016	1.017	0.012	1.017	600'0	0.010	4	4	4	4	4 4	9	9	9	4 4	. 50	00 100
0.81	-	00'	141	1.72	1.79	0.011	0.966	0.016	996.0	0.028	0.028	4	4	4	4	4 4	9	9	9	4 4	. 20	00 100
98'0	-	1.01	1.44	1.76	1.83	-0.003	0.997	0.011	266.0	0.008	0.010	4	4	4	4	4 4	9	9	9	4 4	. 20	001 100
0.88	-	1.02	1.46	1.81	1.89	-0.018	1.032	0.022	1.033	0.017	0.015	4	4	4	4	4 4	9	9	9	4 4	. 20	001 0
0.83	-	1.02	1.46	1.76	1.81	0.000	0.993	0.010	0.994	0.007	0.007	4	4	4	4	4 4	9	9	9	4 4	. 20	001 0
0.87	-	1.02	1.46	1.77	1.85	-0.005	1.008	0.013	1.008	0.007	0.009	4	4	4	4	4 4	9	9	9	4 4	. 20	001 100
98'0	-	1.01	1.43	1.71	1.81	0.020	0.968	0.019	696.0	0.019	0.018	4	4	4	4	4 4	9	9	9	4 4	. 50	001 0
0.88	Ö	66.0	1.42	1.77	1.83	-0.011	1.000	0.028	1.002	0.016	0.022	4	4	4	4	4 4	9	2	9	4 4	. 49	86 6
98.0	ļ —	1.02	1.47	1.78	1.84	-0.002	1.007	0.004	1.007	0.005	0.005	4	4	4	4	4 4	9	9	9	4 4	. 20	001 100
0.85	ļ —	10.1	1.47	1.76	1.82	0.003	0.995	0.009	0.995	0.005	0.005	4	4	4	4	4 4	9	9	9	4 4	. 20	100
0.85	-	1.02	1.46	1.78	1.84	-0.007	1.008	0.003	1.008	0.003	0.002	4	4	4	4	4 4	9	9	9	4 4	. 20	0 100
0.83	-	1.01	1.45	1.75	1.80	0.003	0.985	0.008	0.986	0.012	0.011	4	4	4	4	4 4	9	9	9	4 4	. 20	100
0.83	Ή.	1.02	1.43	1.73	1.78	0.012	0.970	0.011	0.970	0.020	0.019	4	4	4	4	4 4	9	9	9	4 4	. 50	0 100
0.87	Ή.	1.03	1.49	1.81	1.86	900.0	1.015	0.008	1.015	0.020	0.022	4	4	4	4	4 4	9	9	9	4 4	. 50	0 100
0.87	-	1.04	1.49	1.82	1.88	-0.008	1.031	0.005	1.031	0.024	0.023	4	4	4	4	4 4	9	9	9	4 4	. 20	100
98.0	-	1.03	1.50	1.80	1.85	0.000	1.016	0.010	1.017	0.016	0.016	4	4	4	4	4 4	9	9	9	4 4	. 20	100
98'0	-	1.11	1.53	1.78	1.85	0.018	1.011	0.043	1.014	0.028	0.031	4	4	4	4	4 4	9	2	9	4 4	. 49	6 98
0.84	1.	1 04	1 48	1.74	1.82	0.030	0.977	0.020	0.977	0.015	0.018	4	4	4	4	4 4	9	9	9	4 4	. 50	0 100
0.82	-	1 02	1.48	1.77	1.81	600.0-	1.003	0.020	1.004	600'0	0.010	4	4	4	4	4 4	9	9	9	4 4	. 50	0 100
0.85	-	1.00	1.45	1.75	1.85	-0.016	1.008	0.016	1.008	0.011	0.011	4	4	4	4	4 4	9	9	9	4 4	. 50	100
0.84	0	66.0	1.45	1.77	1.83	-0.024	1.011	0.010	1.011	0.008	0.011	4	4	4	4	4 4	9	9	9	4 4	. 20	00 100
0.84	0	66.0	1 44	1.75	1.80	-0.007	0.989	0.008	0.989	0.016	0.017	4	4	4	4	4 4	9	9	9	4 4	. 50	00 100
98.0	1.	1.01	1.42	1.74	1.84	0.000	0.991	0.022	0.991	0.015	0.015	4	4	4	4	4 4	9	9	9	4 4	. 50	00 100
0.87	0	0.95	1.41	1.75	1.85	-0.031	1.009	0.040	1.011	0.027	0.031	4	4	4	4	4 4	9	2	9	4 4	. 49	96
0.78	-	. 05	1.52	1.76	1.80	0.011	0.992	0.053	966.0	0.031	0.039	4	4	4	4	4 4	9	2	9	4 4	. 49	96
0.91	-	1 05	1.48	1.81	1.83	0.045	0.986	0.021	0.987	0.023	0.029	4	4	4	4	4	ď	ď	ď	4		50 100

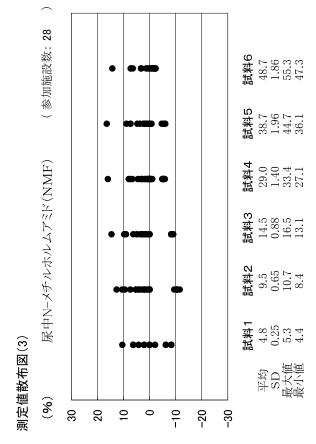
	超	沃弄	100	100	100	100	100	100	100	100	100	100	98	100	100	100	92	98	100	100	100	100	100	100	100	100	100	100	100	100
	‡ \	Ē O	20	20	50	20	20	20	20	20	50	20	49	20	20	20	46	49	20	20	20	20	20	20	20	20	20	20	20	50
	(υ	4	4	4	4	4	4	4	4	4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4	4	4	4	4
	7	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4	4	4	4	4
ᄠ	(5	9	9	9	9	9	9	9	9	9	9	9	9	9	9	2	9	9	9	9	9	9	9	9	9	9	9	9	9
自	2	2	9	9	9	9	9	9	9	9	9	9	2	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
盐	_	a	9 .	9	9	9	9 .	9 .	9 .	9	9	9 .	9 .	9 .	9 .	9 .	. 2	. 2	9	9	9	9 .	9	9	9 .	9	9 .	9	9	9
	(a)		4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4
	9		4 4	4 4	4	4	4	4 4	4 4	4 '	4 4	4 4	4 4	4 '	4 4	4 '	4	4	4	4	4 7	4 '	4 4	4 7	4	4	4 4	4 '	4 '	7
	0		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	6	9	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	E)	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	Θ	PI-2	0.006	0.005	0.004	0.014	0.015	0.012	0.024	0.009	0.007	0.014	0.044	0.012	0.010	0.017	0.070	0.047	0.027	0.025	0.009	0.013	0.016	0.010	0.007	0.029	0.031	0.010	0.023	0.010
	р	PI-1	0.008	900.0	0.004	0.013	0.020	0.008	0.024	0.008	0.005	0.017	0.032	0.010	600.0	0.016	0.071	0.047	0.028	0.019	0.008	0.011	0.011	900'0	900'0	0.029	0.028	0.008	0.022	0 008
) 析	c	tan $ heta$	0.988	0.660	0 995	1.011	1.036	1.007	0.978	0.998	966.0	1.028	0.962	0.995	0.994	0.985	1.074	1.051	1.028	1.002	1.006	1.008	0.974	1.00.1	966'0	1.033	0.979	1.014	0.984	6660
帰 分	p	再現性	0.015	0.007	0.007	0.013	0.019	0.011	0.021	0.013	0.011	0.032	0.047	0.012	0.020	0.004	0.007	0.014	0.005	0.012	0.015	0.015	0.007	0.007	900'0	800.0	0.003	0.004	0.014	0.007
回	а	傾き 再	0.988	0.990	0.995	1.011	1.036	1.006	0.978	0.998	0.996	1.027	0.961	0.995	0.993	0.985	1.074	1.051	1.028	1.002	1.006	1.008	0.974	1.00.1	966.0	1.033	0.979	1.014	0.983	266 0
			_	0.006	0.002	0.003								0.020	0.003				0.000	0.027			0.036							0 005
	-	切片	0.01	0.0	0.0	0.0	-0.024	-0.018	0.001	900'0-	0.011	-0.029	0.081	0.0	0.0	-0.003	-0.005	-0.005	0.0	0.0	-0.008	0.001	0.0	-0.011	-0.004	900'0-	-0.010	-0.020	-0.008	0.0
黒	9	2.89	2.85	2.86	2.87	2.92	2.99	2.88	2.84	2.87	2.88	2.97	2.87	2.88	2.85	2.85	3.10	3.04	2.97	2.91	2.91	2.90	2.85	2.88	2.88	2.98	2.82	2.91	2.84	287
定結	2	2.19	2.18	2.18	2.19	2.23	2.22	2.20	2.13	2.20	2.21	2.21	2.12	2.21	2.20	2.15	2.35	2.30	2.25	2.23	2.20	2.22	2.17	2.18	2.17	2.26	2.13	2.20	2.13	2.18
量測	4	1.78	1.79	1.77	1.77	1.79	1.81	1.78	1.74	1.76	1.78	1.75	1.83	1.80	1.79	1.75	1.90	1.84	1.83	1.82	1.76	1.81	1.78	1.77	1.77	1.83	1.73	1.79	1.76	1 77
尿酸	3	1.12	1.12	1.12	1.12	1.15	1.15	1.10	1.07	1.12	1.13	1.14	1.20	1.14	1.12	1.10	1.21	1.18	1.16	1.16	1.12	1.13	1.12	1.12	1.11	1.15	1.09	1.11	1.08	111
尿中馬	3	0.81	08'0	08'0	08'0	0.81	0.81	0.79	0.82	08.0	0.81	0.80	98.0	0.82	08'0	08'0	98'0	0.85	0.83	0.83	08'0	08'0	0.82	0.79	08'0	0.82	0.78	08'0	0.79	080
7	0	0.48	0.48	0.48	0.48	0.49	0.48	0.47	0.47	0.47	0.49	0.48	0.51	0.49	0.47	0.47	0.51	0.50	0.49	0.50	0.49	0.49	0.51	0.47	0.48	0.50	0.46	0.47	0.47	0.49
	測定方法		4-1	4-1	4-1	4-1	4-1	4-1	4-5	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1	4-1
格売り		試料濃度	03001	07002	60080	11006	12002	13016	13017	13019	13064	13093	14010	14030	18001	21005	23016	23033	25011	26001	26004	26006	27006	27015	34002	34015	35001	41001	44002	48500
42	<u> </u>	凯	_	2 (3 (4	2	. 9		8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	7 97	27	78

5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	切片		回	少。	AT A	,	-	-			計_	曲 点 一		H	H	Т
22 3.4 22 3.3 22 3.3 22 3.3 22 3.4 22 3.3 23 3.4 22 3.3 22 3.3 22 3.3 22 3.3 22 3.3 22 3.3 22 3.3 22 3.3 22 3.3 22 3.3 20 3.2 22 3.3 20 3.2 20 3.2 20 3.3 20 3.2 21 3.3 20 3.2 21 3.3 21 3.2 22 3.3 22 3.3 22 3.3 23 3.4 24 3.2 25 3.3 27 3.3 28 3.3 28 3.3 28 3.3 29 3.3 20 3.3 20 3.3 21 3.3 22 3.3 23 3.4 25 3.3 26 3.3 27 3.3 28 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3		切片	a 傾き 再3	D c 再現性 tan θ	9 PI-1	e PI-2	Θ	2 3	4	2	а	p c	D	Ф (п	計 換算	LI
22 33 22 34 22 33 22 33 22 33 23 34 22 33 24 25 33 26 33 27 33 26 33 27 33 28 33 29 33 20 32 33 24 35 36 37 37 38 39 30 31 32 33 34 34 35 36 37 38 39 40 30 31 32 33 34 34 35 36 37 38 39 34 34 34 35 <td>5.0 5.5</td> <td>0.044</td> <td>986.0</td> <td>0.065 0.9</td> <td>0.987 0.011</td> <td>0.008</td> <td>4</td> <td>4 4</td> <td>4</td> <td>4 4</td> <td>9 .</td> <td>9 9</td> <td>4</td> <td>4</td> <td>50 1</td> <td>100</td>	5.0 5.5	0.044	986.0	0.065 0.9	0.987 0.011	0.008	4	4 4	4	4 4	9 .	9 9	4	4	50 1	100
2.2 3.4 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	5.0 5.5	0.030	0.985	0.034 0.9	0.985 0.005	0.003	4	4 4	4	4 4	9	9 9	4	4	50	100
2.2 3.3 2.2 3.4 2.2 3.4 2.0 3.3 2.1 2.2 3.4 2.2 3.4 2.2 3.4 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.3 3.4 2.3 3.4	5.3 5.6	-0.041	1.034	0116 10	1.036 0.021	0.015	4	4 4	4	4 4	9	5 6	4	4	49	98
2.2 3.4	5.0 5.6	-0.044	1.009	0.042	1.009 0.005	0.010	4	4 4	4	4 4	9	9 9	4	4	50	100
2.2 2.3 2.3 2.0 2.0 2.2 2.2 2.2 2.2 3.4 2.2 3.3 2.2 3.3 2.2 3.3 2.6 3.9 2.0 3.2 2.1 3.2 2.2 3.3 2.1 3.2 2.2 3.3 2.2 3.3 2.2 3.3 2.3 3.4 2.3 3.4	5.1 5.7	-0.078	1.035	0.056	1.036 0.021	0.021	4	4 4	4	4 4	9	9 9	4	4	50	100
2.3 3.4 2.2 3.2 2.2 3.4 2.2 3.3 2.4 2.2 3.3 3.4 2.2 3.3 3.4 2.2 3.3 3.4 2.2 3.3 3.4 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 3.4 2.2 3.3 3.4 2.3 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3	5.0 5.7	-0.030	1.015	0.034 1.0	.015 0.005	0.003	4	4 4	4	4 4	9	9 9	4	4	50	100
2.0 3.2 2.3 3.4 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.6 3.9 2.6 3.9 2.0 3.2 2.1 3.2 2.1 3.2 2.1 3.2 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.3 3.4 2.3 3.4	5.2 5.6	0.012	1.017	0.084 1.0	1.018 0.021	0.019	4	4 4	4	4 4	9	9 9	4	4	49	98
2.3 3.4 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.2 2.2	4.8 5.4	-0.131	0.989	0.053 0.9	0.989 0.053	0.068	4	4 4	4	4 4	9	9 9	3	3	48	96
2.2 3.2 2.2 3.4 2.2 3.3 2.2 3.3 2.2 3.3 2.3 3.4 2.6 3.9 2.0 3.2 2.0 3.2 2.1 3.2 2.1 3.2 2.1 3.2 2.1 3.2 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.3 3.4 2.3 3.4	5.2 5.7	-0.018	1.032	0.053	0.026	0.022	4	4 4	4	4 4	9	9 9	4	4	50	100
2.2 3.4 2.2 3.3 2.2 3.3 2.4 2.5 3.3 2.4 2.5 3.3 2.5 2.5 3.3 2.5 3.3 2.5 2.5 3.3 2.5 2.5 3.3 2.5 2.5 3.3 2.5 2.5 3.3 2.5 2.5 3.3 2.5 2.5 3.3 2.5 2.5 3.3 2.5 2.5 3.3 2.5 2.5 3.3 2.5 2.5 3.3 2.5 2.5 3.3 2.5 2.5 2.5 3.3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	4.8 5.6	-0.021	986.0	0.086	0.986 0.021	0.022	4	4 4	4	4 4	9	5 6	4	4	49	86
2.2 3.3 2.4 2.6 3.8 2.7 3.3 2.7 3.3 2.7 3.3 2.7 3.3 2.7 3.3 2.7 3.3 2.7 3.3 2.7 3.3 2.7 3.3 2.7 3.3 3.4 2.3 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3	5.0 5.8	-0.046	1.030	0.070	1.031 0.016	0.011	4	4 4	4	4 4	9	9 9	4	4	50	100
2.2 3.3 2.6 3.8 2.6 3.9 2.6 3.9 2.2 3.3 2.0 3.2 2.1 3.2 2.1 3.2 2.1 3.2 2.1 3.2 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.3 3.4	5.1 5.6	-0.018	1.011	0.040	0.005	0.003	4	4 4	4	4 4	9	9 9	4	4	50	100
2.3 3.4 2.6 3.9 2.6 3.9 2.0 3.2 2.1 3.2 2.1 3.2 2.1 3.2 2.1 3.2 2.1 3.2 2.1 3.2 2.2 3.3 3.4 2.2 3.3 3.4 2.3 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3	5	-0.026	0.998	0.058 0.9	0.998 0.011	0.013	4	4 4	4	4 4	9	9 9	4	4	50	100
2.6 3.8 2.6 3.9 2.2 3.3 2.0 3.2 2.1 3.2 2.1 3.2 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.2 3.3 2.3 3.4		0.012	1.017	0.084 1.0	1.018 0.021	0.019	4	4 4	4	4 4	9	5 6	4	4	49	98
2.6 3.9 2.0 3.2 2.1 3.2 2.1 3.2 2.1 3.2 2.1 3.2 2.2 3.3 2.2 3.3 2.2 3.3 2.3 3.4 2.3 3.4	58 64	0.023	1.146	0.056 1.1	1147 0153	0.156	4	4 2	2	2 2	4	6 5	1	1	33	99
22 33 20 32 21 32 21 32 21 32 21 32 22 33 22 33 22 33 23 34	6.0 6.3	0.074	1.146	0140	1.148 0.169	0.174	4	3 2	2	2 3	4	5 5	1	1	32	64
20 32 2.1 3.2 2.2 3.3 2.1 3.2 2.2 3.3 2.2 3.3 2.3 3.4	5.1 5.6	-0.062	1.020	0.058 1.0	020 0.011	0.013	4	4 4	4	4 4	9	9 9	4	4	50	100
2.1 3.2 2.2 3.3 2.1 3.2 2.2 3.2 2.2 3.3 2.3 3.4 2.3 3.4		-0.071	0.959	0.090	0.960 0.063	0.074	4	4 4	4	4 4	9	5 6	3	3	47	94
22 3.3 2.1 3.2 2.2 3.2 2.2 3.3 2.3 3.4 2.3 3.4	4.8 5.3	0.033	0.947	0.041 0.9	0.947 0.042	0.038	4	4 4	4	4 4	5	9 9	4	4	49	98
2.1 3.2 2.2 3.3 2.2 3.3 2.3 3.4 2.3 3.4	5.0 5.6	0.000	1.000	0.000	0.000	0.000	4	4 4	4	4 4	9	9 9	4	4	50	100
2.2 3.2 2.2 3.3 2.3 3.4 2.3 3.4	5.0 5.5	-0.118	1.011	0.040	1.011 0.026	0.041	4	4 4	4	4 4	9	9 9	4	4	50	100
2.2 3.3 2.4 2.3 3.4	4.8 5.4	0.038	0.956	0.045 0.9	0.956 0.032	0.027	4	4 4	4	4 4	9	9 9	4	4	50 1	100
2.3 3.4	5.0 5.7	-0.074	1.023	0.052 1.0	1.024 0.011	0.013	4	4 4	4	4 4	9	9 9	4	4	50	100
2.3 3.4		090.0	0.992	060.0	0.993 0.021	0.019	4	4 4	4	4 4	9	9 9	4	4	49	98
		0.060	0.992	0.090	0.993 0.021	0.019	4	4 4	4	4 4	9	9 9	4	4	49	98
1.0 2.2 3.4	5.1 5.7	-0.078	1.035	0.056 1.0	1.036 0.021	0.021	4	4 4	4	4 4	9	9 9	4	4	50	100
3.3	5.0 5.5	-0.014	0.994	0.056 0.9	0.994 0.011	0.013	4	4 4	4	4 4	9	9 9	4	4	50	100
1.7 2.3 3.4	5.2 5.6	0.012	1.017	0.084 1.0	1.018 0.021	0.019	4	4 4	4	4 4	. 6	5 6	4	4	49	98


19 19 19 19 19 19 19 19
4.
48 第 定 結果 日 帰 ら、 6 日 ・ 7 日 ・ 7
4. 6 6. 6 <t< th=""></t<>
4.8 第 定 籍 票 日 場 分 析 中 の
4 (5) (6) — a b c d e 日本 (7) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9) (1248) (127) (118)
4 (5) (6) (7) 有 548 (5) (6) — a b c d e (1) (2) (3) (4) (5) 548 64.7 122.7 切片 (4) 再现性 tan P c d e (1) (2) (3) (4) (4) 4
4 5 桁 分析 所 分析 4 (5) (6) — a b c d e (12.2) </th
4人 (5) (6) — a b c d e (7) (8) 548 84.7 122.7 切片 (6) — a b c d e (1) (2) (3) 52.7 83.3 118.4 0.126 0.968 0.734 0.968 0.031 0.043 4 4 4 4 4 4 4 4 4 4 5 5.2.7 83.3 118.4 0.126 0.968 0.734 0.968 0.031 0.043 4
量 測定 結果 日 場 分 析 48 ⑤ 一 a b c d e 日 548 84.7 122.7 切片 億差 再類性 tan θ PI-1 PI-2 日 日 52.7 83.3 118.4 0.126 0.988 0.734 0.956 0.031 0.043 4 4 52.6 83.8 115.7 0.531 0.954 1.649 0.955 0.035 0.029 4 4 55.1 86.1 122.3 0.162 1.064 0.956 0.036 0.036 0.039 0.036 0.039 0.036 0.039 0.036 0.039 0.036 0.039 0.039 0.036 0.039 0.037 0.049 0.044 0.040 0.009 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039
量 測定結果 日 場 定 報 日 場 方 報 日 場 方 報 日 場 方 報 日 場 方 日子 日 日子 日 日子 日 日子 日 日子 日 日子 日 日子 日子<
量 測定結果 一 a b 方 折 4.3 (五) (五) 一 a b c d 54.8 (4.7) (2.7) (4.7) (4.2)
量 測 定 結果 一 a b 分 析 4.8 ⑤ 一 a b 分 析 54.8 84.7 122.7 切片 (減き 再現性 中田 115.7 c d 52.7 84.3 118.4 0.126 0.968 0.734 0.968 0.031 52.7 83.3 118.4 0.126 0.968 0.734 0.995 0.031 56.1 78.3 125.4 -0.177 0.997 3.508 0.999 0.036 56.1 78.3 125.4 -0.177 0.997 0.361 1.018 0.012 55.4 86.4 122.3 0.162 1.004 0.369 1.004 0.011 55.4 86.4 122.3 0.162 1.004 0.369 1.004 0.012 55.4 87.6 122.1 -0.224 1.008 0.340 1.009 0.011 55.7 82.9 122.1 0.496 0.992 0.513
量 測 定 結果 一 a b 方 析 4.4 ⑤ 一 a b 方 析 54.8 84.7 122.7 切片 傾き 再現性 tan Ø P 52.7 84.3 118.4 0.126 0.968 0.734 0.968 52.7 83.3 118.4 0.126 0.968 0.734 0.968 56.1 78.3 125.4 -0.177 0.997 3.508 0.999 56.1 78.3 125.4 -0.177 0.997 3.508 0.999 56.9 86.1 124.8 -0.330 1.018 0.361 1.018 56.4 86.4 122.3 0.169 0.369 0.909 0.909 55.4 84.6 124.4 -0.040 0.909 0.369 0.909 55.7 82.9 122.2 -0.123 0.909 0.509 0.909 55.7 84.6 124.3 -0.224 1.008 0.459 0.909
量 測 定 結 果 一 a b c 44 ⑤ 一 a b c 54.8 84.7 122.7 切片 傾き 再现性 tan θ 55.7 84.7 122.7 切片 傾き 再现性 tan θ 55.7 83.3 118.4 0.126 0.968 0.734 0.958 56.1 78.3 125.4 0.126 0.964 1.649 0.959 56.1 78.3 125.4 0.017 0.997 3.508 0.995 56.9 86.1 124.8 -0.017 0.997 3.508 0.999 55.8 86.1 122.3 0.162 1.004 0.869 0.999 55.4 87.6 124.1 -0.040 1.008 0.940 1.008 55.4 84.5 122.2 -0.123 0.995 0.359 0.996 55.7 84.8 122.2 -0.123 0.996 0.359 0.996 55.7
量 測 定 結 果 一 a b 時 分 54.8 84.7 122.7 切片 傾き 再现性 ta 55.8 84.7 122.7 切片 傾き 再现性 ta 55.7 83.3 118.4 0.126 0.968 0.734 16.49 56.1 78.3 125.4 -0.177 0.997 3.508 1.649 56.1 78.3 125.4 -0.177 0.997 3.508 1.649 56.1 78.3 125.4 -0.177 0.997 3.508 1.649 56.9 86.1 122.3 0.162 1.018 0.359 1.649 55.4 86.4 122.3 0.040 1.008 0.940 1.598 55.7 87.9 122.2 -0.123 0.995 0.559 1.538 55.7 86.4 122.2 -0.123 0.995 0.513 1.569 55.7 86.9 122.1 -0.123 1.009 0.75
量 測 定 結果 一 a a 4 ⑤ ⑥ 一 a a 54.8 84.7 122.7 切片 極幸 再 52.7 84.7 122.7 切片 極幸 再 52.7 83.3 118.4 0.126 0.968 2 52.7 83.3 118.4 0.123 0.954 0.954 56.1 78.3 125.4 -0.177 0.997 0.997 55.7 86.4 122.3 0.162 1.004 0.995 55.4 84.6 124.1 -0.040 1.008 0.995 55.4 82.4 117.9 0.244 0.961 0.995 55.1 84.3 122.2 -0.123 0.995 0.995 55.1 86.4 126.2 -0.243 1.027 0.995 55.1 86.3 122.1 0.097 0.995 0.995 55.1 86.4 126.2 -0.243 1.027 0.995
事 測 定 結 果 一 。 日 。 4人 ⑤ ⑥ ⑥ 一 一 。 a 54.8 84.7 122.7 切片 (資き 52.7 83.3 118.4 0.126 0.968 52.7 83.3 118.4 0.126 0.968 55.1 83.3 118.4 0.126 0.968 56.1 78.3 115.4 -0.177 0.997 56.9 86.1 124.8 -0.330 1.018 55.7 86.4 122.3 -0.177 0.997 55.4 86.4 124.1 -0.040 1.008 55.4 87.6 124.1 -0.244 1.008 55.7 86.4 122.2 -0.123 0.995 55.1 84.3 122.2 -0.243 1.027 55.0 86.4 126.2 -0.243 1.027 55.0 88.8 1.22.1 0.049 0.999 55.1 86.4 122.2 -0.243 1.027 55.1
■ 測 定 結 果 (4) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7
画 測 定 結 果 4 ⑤ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑤ 55.8 84.7 122.7 ‡ 章 55.7 \$
量 測 定 結果 4 ⑤ 6 54.8 8.7 122 55.7 83.3 118 52.7 83.3 118 52.7 83.3 121 56.1 78.3 121 56.1 78.3 121 56.2 86.1 124 55.3 84.6 124 55.4 84.6 122 55.7 85.9 122 55.1 84.7 121 55.1 84.3 122 55.1 84.9 124 55.1 84.0 118 55.1 85.1 121 55.1 85.1 121 53.9 84.0 118 53.7 82.9 117 53.0 82.9 117 52.0 84.6 125 55.4 84.6 125 56.4 84.6 125 56.4 84.6
編 編 編
(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
#
展
展 第 第 2 1 1 1 1 1 1 1 1 1 1 1 1 1
NO 施設CD 前科濃度 1 03001 2 08009 4 11006 5 12002 6 13016 9 13017 1 14010 1 1 14010 1 2 1005 1 2 1005 1 3017 1 3017 1 3017 1 1 14010 1 2 1005 1 2 2001 1 2 2001 1 3 2001 1 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
N N N N N N N N N N N N N N N N N N N


	佈信	茶	96	100	100	100	100	100	100	100	100	98	100	100	98	100	96	96	98	100	100	100	100	100	100	100	100	00,
	‡.		48	20	20	20	20	20	20	20	20	49	20	20	49	20	48	48	49	20	20	20	20	20	20	20	20	Ī
	(υ	4	4	4	4	4	4	4	4	4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4	4	İ
		5	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	1
I 点		ပ ၁	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	5 6	9 9	9 9	5 6	9 9	5 6	4 6	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	l
評価	(ס	2	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	2	9	9	9	9	9	9	9	9	1
IIII	(4	9	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	1
	Œ	_	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	1
	(C)		4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	1
	0		4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	1
	(€	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
	Ф	PI-2	0.045	0.035	0.030	0.009	0.027	0.028	0.021	0.007	0.022	0.024	0.030	0.027	0.027	0.021	0.052	0.047	0.042	0.025	0.027	0.037	0.026	0.024	0.015	0.019	0.026	
	р	PI-1	0.052	0.031	0.040	0.013	0.019	0.036	0.012	0.010	0.017	0.019	0.027	0.019	0.019	0.007	0.031	0.037	0.049	0.018	0.018	0.025	0.015	0.012	600.0	0.013	0.032	
分析	c	$tan \theta$	1.062	1.037	0.962	0.985	0.984	1.041	1.017	986.0	1.025	966.0	0.981	0.983	0.998	1.00.1	0.997	7/6.0	1.066	0.978	0.995	896.0	066.0	1.014	1.013	686.0	1.032	
唱	p	再現性	0.149	0.187	0.327	0.162	0.199	0.123	0.077	0.245	0.156	0.519	0.406	0.079	0.496	0.168	0.550	0.740	0.384	0.367	0.386	0.353	0.186	0.281	0.065	0.097	0.428	
□	а	傾き 再	1.062	1.037	0.962	0.985	0.984	1.041	1.017	986.0	1.025	966'0	0.981	0.983	0.997	1.00.1	0.997	9/6.0	1.066	0.978	0.994	0.967	0.989	1.014	1.013	0.989	1.032	
	_		-0.163	-0.210	-0.032	0.061	-0.052	-0.081	-0.207	0.133	-0.253	-0.084	860.0-	-0.046	960'0	0.031	-0.450	-0.111	-0.313	0.334	-0.043	0.183	-0.011	-0.155	-0.136	-0.032	800:0-	
ml/	ı	7 切片	(0 - (2 -0		9 -0	+	_	0 (2 -0	0- (7 -0	0- 6		0 /		0- (2 -0	0 /	1 -0	2 0	t -0		0- 1	3 -0	9 –0	
定結集	9	40.7	43.0	42.0	39.6	40.3	39.8	42.4	41.2	40.0	41.5	41.0	40.2	39.6	41.2	40.7	40.6	39.0	43.5	39.7	40.1	39.5	40.4	40.8	41.1	40.3	41.6	
熏	2	29.2	31.0	30.0	27.6	28.6	29.0	30.1	29.5	29.2	29.7	28.2	28.0	28.8		29.3	28.2	29.5	30.2	29.4	29.6	28.9	28.8	29.9	29.5	28.7	30.8	
酢 酸量	4	13.5	14.1	14.1	12.8	13.3	13.1	14.0	13.4	13.7	13.3	13.2	12.9	13.2	13.6	13.6	12.3	12.4	14.1	13.7	13.1	13.2	13.1	13.5	13.5	13.3	13.6	
	3	8.7	8.9	8.7	8.3	8.8	8.5	0.6	9.8	9.8	8.7	8.9	8.8	8.5	9.0	9.0	9.8	8.7	8.9	8.9	8.5	8.8	8.5	9.8	9.8	9.8	9.1	
トリク	3	4.4	4.5	4.2	4.4	4.4	4.3	4.5	4.3	4.4	4.3	4.4	4.1	4.3	4.5	4.3	3.9	4.0	4.5	4.5	4.5	4.5	4.5	4.2	4.4	4.4	4.5	
尿中	①	1.7	1.8	1.6	1.7	1.7	1.6	1.7	1.6	1.7	1.6	1.6	1.7	1.6	1.8	1.6	1.6	1.6	1.6	1.8	1.6	1.5	1.8	1.6	1.6	1.6	1.7	
	測定方法			5-1	5-1	5-1	5–3	5-1	5-1	5-1	5–1	5-1	5-1	5–3	5-1	5–1	5–1	5-1	5–1	5–3	5-1	5-1	5-1	5-1	5-1	5-1	5-1	
哲型CD	が見るし	試料濃度	03001	07002	60080	11006	12002	13016	13017	13019	13064	13093	14010	14030	18001	21005	23016	23033	25011	26001	26006	27015	34002	34015	35001	41001	44002	
Q	2	其	-	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	

	车	¥ K	100	100	100	100	100	100	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	‡ 4	ā I	20	20	20	20	20	20	49	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
╽┠	(υ	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	7	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
型	-	,	9 9	9 9	9 9	9 9	9 9	9 9	5 6	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9	9 9
百		<u>-</u> ت	9	9	9	9	9	9	3 9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
	(4	9	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Ī	Œ	9	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
ŀ	(_	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
ŀ	0		4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4
-	(4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	Ф	PI-2	0.026	0.021	0.007	0.016	0.017	0.009	0.028	0.019	600'0	0.014	0.019	0.000	0.013	900.0	0.011	0.024	0.041	0.017	0.001	0.019	0.007	0.022	0.011	0.019	0.039	0.018	0.041	0.012
	р	PI-1	0.024	0.018	0.009	0.018	0.018	0.009	0.024	0.012	900'0	0.015	0.021	0.000	0.012	900'0	0.012	0.021	0.036	0.021	0.003	0.018	600.0	0.015	900'0	0.021	0.030	0.015	0.033	600.0
分	O	$tan \theta$	0.971	0.999	1.006	1.018	1.044	1.006	1.000	0.997	1.004	1.009	0.977	1.000	0.992	0.989	0.983	0.984	1.027	1.027	1.009	1.023	0.980	0.997	966.0	1.022	0.989	1.027	0.983	0.993
響回	q	再現性	0.009	0.012	0.008	900.0	900.0	0.006	0.014	900'0	0.007	0.007	600'0	0.000	0.008	0.005	900'0	0.005	0.004	900'0	0.003	0.007	0.007	0.004	900'0	0.012	0.008	600.0	0.005	0.008
ŀ	а	傾き	0.971	0.999	1.006	1.018	1.044	1 006	1.000	0.997	1.004	1.009	0.977	1.000	0.992	0.988	0.983	0.984	1.027	1.027	1.009	1.022	0.980	0.997	966.0	1.022	0.989	1.027	0.983	0.993
	1	切片	0.003	0.007	-0.002	0.000	-0.018	0.001	0.013	-0.005	-0.002	0.003	0.001	0.000	0.001	900.0	0.003	-0.003	0.005	-0.003	-0.003	900.0-	0.010	-0.007	-0.001	0.000	-0.011	-0.017	600'0-	0.002
₩	9	1.19	1.15	1.20	1.20	1.21	1.23	1.20	1.19	1.18	1.19	1.20	1.17	1.19	1.18	1.18	1.17	1.17	1.23	1.22	1.20	1.21	1.17	1.18	1.18	1.22	1.17	1.21	1.16	1.18
河河	2	0.77	92.0	0.76	0.76	0.78	0.78	0.77	08.0	92'0	0.77	0.78	0.74	0.77	92.0	0.77	92.0	0.75	0.79	0.78	0.77	0.78	0.77	92.0	0.77	0.77	0.74	0.77	0.75	77.0
幽	4	0.55	0.54	0.57	0.56	0.57	0.55	0.56	0.57	0.55	0.56	0.57	0.54	0.55	0.56	0.55	0.55	0.54	0.57	0.57	0.55	0.56	0.55	0.54	0.55	0.57	0.54	0.55	0.53	0.55
	(O)	0.37	0.37	0.38	0.37	0.38	0.37	0.38	0.39	0.37	0.37	0.38	0.37	0.37	0.37	0.38	0.37	98.0	0.39	0.38	0.37	0.38	0.38	0.37	0.37	0.39	98'0	0.35	98'0	0.38
中 ト	8	0.26	0.25	0.27	0.26	0.26	0.26	0.26	0.27	0.25	0.25	0.26	0.25	0.26	0.25	0.26	0.25	0.26	0.27	0.26	0.26	0.25	0.26	0.25	0.26	0.26	0.24	0.25	0.24	0.25
	0	0.18	0.17	0.18	0.18	0.18	0.17	0.18	0.18	0.17	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.17	0.19	0.18	0.18	0.18	0.18	0.17	0.17	0.18	0.17	0.18	0.17	0.18
	測定方法		6-1	6–1	6-1	6-4	6-1	6-1	6-4	6–1	6–1	6–1	6–1	6–1	6-1	6-1	6–1	6-1	6–1	6–1	6-1	6-1	6-1	6–1	6–1	6–1	6–1	6–1	6-1	6-1
)施設CD	"EELXOD	試料濃度	03001	07002	60080	11006	12002	13016	13017	13019	13064	13093	14010	14030	18001	1 21005	5 23016	33033	25011	3 26001	26004	26006	27006	27015	34002	34015	35001	41001	44002	48500
0N	ź	础	-	2	3	4	2	9	7	8	6	10	Ξ	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28


	梅笛	¥ Κ	100	100	94	100	100	100	96	100	96	100	94	100	100	96	92	94	100	100	99	100	100	100	100	96	96	100	100	
	する		20	20	47	20	20	20	48	20	48	20	47	20	20	48	46	47	20	20	33	20	20	20	20	48	48	20	20	
	(ט	4	4	3	4	4	4	3	4	3	4	3	4	4	3	3	3	4	4	2	4	4	4	4	3	3	4	4	
世	7	5	6 4	6 4	6 3	6 4	6 4	6 4	6 3	6 4	6 3	6 4	6 3	6 4	6 4	6 4	5 3	6 3	6 4	6 4	4 2	6 4	6 4	6 4	6 4	6 3	6 3	6 4	6 4	_
角		<u> </u>	9	9	2 (9	9	9	9 9	9	9 9	9	9 9	9 9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	_
評値	(ט	9	9	9	9	9	9	9	9	9	9	2	9	9	9	2	2	9	9	3	9	9	9	9	9	9	9	9	
iliia	(0	9	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	2	4	4	4	4	4	4	4	4	•
	(E)	9	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	2	4	4	4	4	4	4	4	4	
	(_	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	2	4	4	4	4	4	4	4	4	
	6	_	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	3 4	4 4	4 4	4 4	4 4	3 3	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	
	(-	_	4 ,	4 4	4	4	4	4 4	4 4	4	4 4	4 4	4 4	4 4	4	4	4 4	4 4	4 4	4 4	4	4 4	4	4	4	4	4	4	4	_
				0.010	890.0	0.012	0.048	0.012	0.068	0.013	0.068	0.005	0.063	0.040	0.007	0.064	0.082	0.080	0.022	0.019	0.140	0.012	0.025	800.0	0.012	0.067	890.0	0.002	0.005	
	Ф	PI-2	0.011		0.0																					0.0				
	р	PI-1	0.011	0.008	0.051	0.012	0.043	0.008	0.052	0.010	0.053	0.009	0.067	0.035	0.010	0.049	080'0	0.078	0.019	0.013	0.150	0.010	0.021	900'0	0.011	0.051	0.052	0.003	0.008	
分析	c	$tan \theta$	1.014	0.982	0.984	1.008	1.034	0.999	0.980	0.987	0.978	0.983	1.068	1.030	0.984	0.983	1.073	1.069	0.997	0.979	1.156	0.998	1.012	966.0	1.005	0.979	0.979	966.0	0.984	
響	p	再現性	0.215	0.254	0.659	0.302	0.203	0.192	0.535	0.209	0.574	0.302	0.153	0.080	0.396	0.450	0.307	0.169	0.492	0.369	0.372	0.339	0.239	0.160	0.308	0.525	0.563	0.149	0.210	
回	а	傾き 再	1.014	0.982	0.983	1.008	1.034	0.999	0.979	0.987	0.977	0.983	1.068	1.030	0.984	0.982	1.073	1.069	966.0	0.979	1.156	0.998	1.012	0.995	1.005	0.979	0.979	966.0	0.984	_
				0.304		0.108	0.211	0.132		0.237		0.197		0.128	0.267		0.170	0.196	0.406	0.583		0.140	0.239	0.175	0.153			0.070	0.232	
		切片	-0.068	0.5	-0.818	0.1	0.2	0.1	-0.757	0.2	-0.720	0.1	-0.038	0.1	0.2	-0.743	0.1	0.1	0.4	0.5	-0.142	0.1	0.2	0.1	0.1	-0.725	-0.742	0.0	0.5	
。 結 果	9	48.4	49.0	47.5	47.6	48.5	20.0	48.5	47.3	47.9	47.3	47.4	51.5	49.9	47.4	47.3	51.8	51.9	48.0	47.7	55.3	48.0	48.9	48.4	48.4	47.3	47.3	48.1	47.6	
測定	②	38.4	39.1	38.3	36.1	39.2	40.2	38.7	36.2	38.1	36.1	38.4	41.2	39.8	38.6	36.6	41.8	41.2	39.1	38.4	44.7	38.8	39.3	38.2	39.1	36.2	36.1	38.5	38.2	
アミド	4	28.8	28.8	28.8	27.3	29.3	30.1	28.6	27.3	28.9	27.2	28.5	30.7	29.8	28.7	27.3	30.9	31.1	29.6	28.8	33.4	29.1	29.6	29.0	29.3	27.3	27.4	28.9	28.8	
ルホルム	3	14.4	14.6	14.4	13.1	14.7	15.1	14.6	13.1	14.6	13.1	14.4	15.3	14.9	14.6	13.2	15.7	15.8	14.9	15.1	16.5	14.7	14.8	14.6	14.5	13.2	13.1	14.4	14.4	
- メチ	3	9.2	9.5	9.5	8.5	9.6	10.0	9.7	8.5	9.7	9.8	9.5	10.2	6.6	9.5	8.4	10.5	10.4	9.7	10.0	10.7	9.5	6.6	9.7	8.6	8.5	8.5	9.2	9.6	
R 中 N	①	4.8	4.9	2.0	4.4	4.8	5.1	4.9	4.4	4.7	4.4	4.8	2.0	5.1	4.8	4.5	5.1	5.1	4.9	4.8	5.3	4.7	4.9	4.8	4.8	4.4	4.4	4.8	4.8	
	測定方法			92	9–1	9-1	9-1	8-2	9–1	9-1	9-1	9–1	9–5	9-1	9–1	9–1	9–5	9–5	9-1	9-1	92	9-1	9–1	9–1	9-1	9-1	9-1	9-1	9–1	•
体型CD	_	試料濃度	03001	07002	60080	11006	12002	13016	13017	13019	13064	13093	14010	14030	18001	21005	23016	23033	25011	26001	26004	26006	27006	27015	34002	34015	35001	41001	44002	•
Q N	2	試料	-	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	50	21	22	23	24	25	76	27	

図IV-1 A参加施設の検査項目別偏差 測定値散布図(1)

※30%もしくは一30%を超えている場合は【×】が表示されています。

100 96 96 100 点数 NMF 託数 က 2 9 民 100 94 100 98 98 数 40(모 託数 က 0 2 2 2 民 点数 00 0 TCA 託数 9 / က 2 9 図 9 9 9 98 小梦 託数 Ξ Ξ က 闵 100 100 点数 ₹ 託数 Ξ က 92 100 引数 ¥ 受託数 = က 0 0 0 0 00 00 8 00 点数 MHA 託数 12 106 Ξ က ıΝ 88 100 9 9 9 00 00 00 点数 ALA託数 Ξ က ık 100 点数 Pb-B 受託数 Ξ က 162 施設コード ĝ = ~ က ω

受託施設の項目別評価一覧

表IV-3

V. 尿中フェニルグリオキシル酸に係る プロセス調査結果

1. 調査の目的

令和6年度は全衛連の精度管理に参加する施設(A参加施設及びB参加施設)にフェニルグリオキシル酸(PGA)試料によるプロセス調査実施した。プロセス調査は、全衛連から送られる測定試料、尿中フェニルグリオキシル酸の受領から報告までの流れを調査票に記入回答する方法で行われている。

調査票は巻末「調査前送付文章」に掲載する「尿中フェニルグリオキシル酸測定に関する調査票(I)」と「尿中フェニルグリオキシル酸委託測定に関する調査票(I1)」を使用した。

労働衛生検査精度管理においては、採集した試料測定値の精度だけではなく、試料の採集 (授受)とその状態、外部検査機関に検査委託する試料の搬送、保存、測定、そして外部検 査機間(登録衛生検査所)受託からの検査結果報告の受理までの一連のプロセスを明らかに することは重要である。

またこれらの流れの中で行われている測定データ管理に関する文書管理、正確な記述は、 信頼に足る健康診断施設として検査結果を依頼者に報告する上で重要なことと考える。すな わち総合的な労働衛生検査の正確さが担保されることになる。

2. 調査の方法

フェニルグリオキシル酸量測定用試料(2種類の濃度の試料)を、労働衛生検査精度管理調査全参加施設に宅急便により送付し、試料を受け取った参加施設は以下のことを行う。

- (ア) 自らの施設で測定する(A参加施設)
- (イ) 試料を受託施設に送って測定を依頼する(B参加施設)

測定されたフェニルグリオキシル酸量測定結果は、測定結果記入用紙「調査票(その1)」 を用いて全国労働衛生団体連合会事務局に報告する。

A参加施設は「尿中フェニルグリオキシル酸測定に関する調査票(I)」および「尿中フェニルグリオキシル酸委託測定に関する調査票(I)」(以下調査票(I)、調査票(I)の 2 種類の調査票により受取、保存、測定委託等を報告する。

 ${\bf B}$ 参加施設は調査票(${\bf I}$)により、試料の受取り、保管、検査委託等の状況を報告する。また、 ${\bf B}$ 参加施設から試料の測定を依頼された登録衛生検査所は調査票(${\bf II}$)を報告する。 [${\bf A}$] 試料発送から [${\bf F}$] 測定結果報告までの流れを、図 ${\bf V}$ -1 に示す。

図 V-1 プロセス調査の流れと主な調査項目

[A] 全衛連から試料と調査票の発送、10月22日(火曜日) 尿中フェニルグリオキシル酸測定に関する調査票(Ⅰ) 尿中フェニルグリオキシル酸受託測定に関する調査票(Ⅱ)

[B] 試料の受領

調査票(I)

- ・受領日
- ・到着時の試料の状態
- [D] B参加施設(外部施設測定)
- 調査票(I)を全衛連に送付
- 調査票(Ⅱ)を登録衛生検査所に送付

[C] A参加施設(自施設測定) 調査票(I)と(Ⅱ)を全衛連に送付

調査票(I)

外部委託測定

- ・試料受渡日
- ・受渡までの保存
- ・受渡方法
- ・受渡記録

調査票(I) 自施設測定

- ・試料測定日
- ・測定までの保存状況
- ・測定方法

[E] 登録衛生検査所

調査票(Ⅱ)を全衛連に送付

調査票 (Ⅱ)

- ・試料受領日
- ・受領方法
- ・受領記録
- ・受領時の試料の状態
- ・受領後測定までの試料の保存

[F] 測定結果の報告

調査票(I)

- ・試料測定日
- ・結果受領日
- ・測定結果

調査票 (Ⅱ)

- ・測定方法
- ・測定日
- ・測定結果の報告日
- ・測定結果

3. 調查結果

プロセス調査の参加施設と解答率

10月22日の午後、冷蔵宅急便にて精度管理に参加する施設、322施設に PGA 試料を発送し、調査票(I)、調査票(I)の 2種類を同梱した。

今年度のプロセス調査の参加は 322 施設であり、調査票 (I) の未返送が 2 施設見られたが初期アンケートでは参加希望を示していたので集計は 322 施設として行なった。登録衛生検査所が回答する調査票 (II) は 301 施設であった。

次に、調査票(Ⅰ)、調査票(Ⅱ)を用いて行った、PGA 試料の発送から受領、保存、 測定、報告結果までの流れの集計を以下に報告する。

(1) 試料の受領日について

参加施設、図V-1 記載の[D] と[C] から全衛連に返送された調査票(I) 及び参加施設より受託した登録衛生試験所[E] から返送された調査票(II) の回答結果から、全衛連から発送された試料の全参加施設の試料受領日、B 参加施設が受領した試料を登録衛生検査所へ受け渡した日、登録衛生検査所の試料受領日について日数状況を表V-1 に示す。

全衛連から発送された試料は2日以内に全参加施設は試料受領(98%)している。B参加施設は、受領した試料を3日以内に登録衛生試験所に受け渡している(96%)。調査票(II)の登録衛生試験所への試料受領は、全衛連の発送日から4日以内に行われている。

以 1 主参加地段の政権支援、立政衛工模量別、の支行後し、立政衛工模量別の支援						
	調査票(I)	調査票(I)	調査票(Ⅱ)			
	全参加施設	B参加施設	登録衛生検査所			
	試料受領	試料受渡	試料受領			
	全衛連の発送日から	試料受領日から	全衛連の発送日から			
24 時間以内	289	217	128			
1日超え2日以内	25	59	114			
2日超え3日以内	1	14	35			
3日超え4日以内	0	0	24			
4日超え5日以内	0	0	0			
5日超え	1	0	0			
誤記入・未記入	3	10	0			
未測定	1	1	0			
未返送	2	0	0			
合計	322	301	301			

表 V-1 全参加施設の試料受領、登録衛生検査所への受け渡し、登録衛生検査所の受領

(2) 試料の到着時および受領時の状態

試料の到着時および受領時の状態は調査票(I)調査票(II)で行なわれている。調査票(II)は全衛連から発送された試料の到着時の状態と試料の漏れ、破損の有無について調査している。調査票(III)は登録衛生試験所が委託された試料を受領した時の状態について調査している。表 V-I2 に試料の到着時、受領時の状態を示した。

調査票(I)調査票(II)とも多くの試料は冷蔵状態で到着し、登録衛生試験所は冷蔵状態で受領している。全衛連から試料は冷蔵便で発送されているのが、調査票(I)では試料の一部が冷凍での到着(3件)常温(2件)と報告されている。試料の到着状態の調査票

(I)の未記入は36件(11%)と多く見られた、受領時の状態(調査票II)の未記入は見られなかった

表 V-3 に試料の到着時、受領時の漏れ、破損の有無を示した。調査票 (I) 調査票 (I) とも試料の到着時の漏れ、受領時の破損は見られなかった。調査票 (I) 漏れの項目で未記入は 38 件数見られている。

表 V-2 試料の到着時および受領時の状態

試料の状態	調査票(I)	調査票(Ⅱ)
	件数	件数
冷凍状態	3	0
冷蔵状態	278	300
常温	2	1
未記入	36	0
未測定	1	0
未返送	2	0
合計	322	301

表 V-3 試料の到着時および受領時の漏れ、破損の有無

温力		調査票(I)	調査票(Ⅱ)
//羽 4 し	70000000000000000000000000000000000000	件数	件数
	あり	0	0
	なし	281	298
 漏れ	未記入	38	3
1/111 A U	未測定	1	0
	未返送	2	0
	合計	322	301
	あり	0	0
	なし	318	301
 破損	未記入	1	0
19又1貝	未測定	1	0
	未返送	2	0
	合計	322	301

(3) 委託、測定までの保存

調査票 (I) はB参加施設が全衛連から発送された試料を受領し、そして登録衛生試験所に測定を委託(受け渡し)するまでの保存状態を調査している。調査票(II)は登録衛生試験所が受託した試料を測定するまでの保存状態を調査している。

表 V-4 は委託まで、受領後測定までの保存状況を示している。登録衛生検査所(調査票 (II))では測定まで冷蔵保存が行なわれているが、B 参加施設(調査票 (I))では測定の 委託まで常温保存が 1 件数見られた。

表 V-4 委託まで、受領後測定までの保存

· · · · · · · · · · · · · · · · · · ·	() () () () () ()	
	調査票(I)	調査票(Ⅱ)
	委託までの保存	測定までの保存
	件数	件数
冷凍	0	0
冷蔵	296	301
常温	1	0
未記入	3	0
未測定	1	0
未返送	0	0
合計	301	301

(4) 外部委託先への試料の受渡方法と受渡記録

表 V-5 は外部委託先との試料の受渡方法について示している。調査票(I)、(II)ともに試料の受け渡しは受託側が回収をしている。

調査票 (II) において郵送または宅配等に回答した件数は、4 件数であった。これについては、令和2年はコロナ禍による影響で 79 と多く見られ、令和3年度は0件数、令和4年度は6件数となっている。

F T T T T T T T T T T T T T T T T T T T	之队和 50 之	=
	調査票(I)	調査票(Ⅱ)
	受渡方法	受領方法
	件数	件数
委託側が届ける	13	4
受託側が回収	278	293
郵送または宅配等	5	4
未記入	4	0
未測定	1	0
未返送	0	0
合計	301	301

表 V-5 外部委託先との受渡および受領方法について

表 V-6 は試料の受渡記録と受領記録について示している。調査票(II)の受託側は、受領記録の有りが 294 件数である。調査票(I)の委託側は、受渡記録の無いが 61 件数見られた。これについては、令和 2 年度が 40 件数、令和 3 年度が 51 件数、令和 4 年度が 59 件となっている。

公 ・						
	調査票(I)	調査票(Ⅱ)				
	受渡記録	受領記録				
	件数	件数				
有	236	294				
無	61	7				
未記入	3	0				
未測定	1	0				
未返送	0	0				
合計	301	301				

表 V-6 試料の受渡記録と受領記録

(5) 試料の測定日

調査票(I)には、A 参加施設が試料を測定した日または B 参加施設が測定を委託した登録衛生検査所に試料測定日を問い合わせて記載することになっている。調査票(II)には、登録衛生検査所が試料を測定した日を記載することになっている。表 V-7 には全衛連の試料発送日から試料測定日までの期間を示しており、表 V-8 には登録衛生検査所における試料受領日から試料測定日までの期間を示している。両表とも測定は1日超え1週間以内に多くの試料が測定(それぞれ192、233 件数)されている。試料の受領後直ちに測定される一般的な生化学的検査は状況が異なっている。

表 V-7 試料の測定について(全衛連の試料発送日から)調査票 I

	測定日	件数
	24 時間以内に測定	3
	1日越え1週間以内に測定	192
(全衛連)	1週間越え2週間以内に測定	93
(王衛建) 発送日から	2週間越え3週間以内に測定	32
光広日かり	3週間越えに測定	2
	未記入・誤記入	0
	合計	322

表 V-8 試料の測定について(登録衛生検査所の試料受領日から)調査票 II

	測定日	件数
	24 時間以内に測定	38
	1日越え1週間以内に測定	233
(登録衛生検査所)	1週間越え2週間以内に測定	19
(全球単生恢重別) 試料受領目から	2週間越え3週間以内に測定	10
四十文 原口 パ゚り	3週間越えに測定	1
	未記入・誤記入	0
	合計	301

(6) 測定方法

表 V-9 に測定方法(調査票 II)を示す。試料 PGA の測定方法は LC-UV 法(93 件数)と LC-MS 法(206 件数)の 2 種類である。

測定方法 件数
LC-UV法 93
LC-MS法 206
その他 2
未記入 0
合計 301

表 V-9 測定方法 (調査票Ⅱ)

(7) 測定結果の受領日と報告日

調査票(I)には結果受領日、調査票(II)には測定結果の報告日の記載項目がある。それらの集計結果を表 V-10 に示した。調査票(II)は3週間超4週間以内の報告が多く273件数、4週間超5週間以内の報告も3件数見られる。調査票(II)は2週間超3週間以内の報告が90件数、3週間超4週間以内の報告が208件数である。なお、今回の調査は、試料の発送が10月22日、回答票等提出期限が11月22日であった。

表 V-10 測定結果の受領日と報告日

	調査票(I)	調査票(Ⅱ)
	結果受領日	測定結果の報告日
	試料受渡日から	試料受領日から
1週間以内の報告	1	2
1週間越え2週間以内に報告	4	0
2週間越え3週間以内に報告	10	90

3週間越え4週間以内に報告	273	208
4週間越え5週間以内に報告	3	0
5 時間超えに報告	0	0
誤記入・未記入	9	1
未測定	1	0
未返送	0	0
合計	301	301

(8) A参加施設の試料測定日と測定までの保存状況、測定方法

表 V-11 に A 参加施設の試料測定日を示す。実際に PGA 試料を測定しているには 19 施設であった。試料の測定日は全衛連から発送 3 日以内に測定が 4 施設、5 日を超えての測定は 11 施設見られた。表 V-12 に A 参加施設の測定までの試料の保存状況を示す。試料の保存は全 19 施設が冷蔵保存であった。表 V-13 に A 参加施設の PGA 試料の測定方法を示す。

表 V-11 A参加施設の試料測定日

		/rl。\\/.
	測定日	件数
	24 時間以内に測定	1
	1日越え1週間以内に測定	10
(全衛連) 発送日から	1週間越え2週間以内に測定	5
	2週間越え3週間以内に測定	2
	3週間越えに測定	1
	未記入・誤記入	0
	未返送	2
	合計	21

表 V-12 A参加施設の測定までの保存状況

	件数
冷蔵	0
	19
常温	0
未記入	0
未返送 合計	2
合計	21

表 V-13 A参加施設の測定方法

• • •	
測定方法	件数
LC-UV 法	15
LC-MS 法	2
その他	2
未記入	0
未返送	2
合計	21

(9) 令和6年度 尿中フェニルグリオキシル酸測定結果の平均値と標準偏差

令和 6 年度のプロセス調査参加施設(322 施設)のうち、測定施設(319 施設)の PGA 測定結果の平均値(標準偏差)は、試料 1 が 0.31 g/L(0.011 g/L)、試料 2 が 0.57 g/L(0.019 g/L)であった。測定を実施した日は、全衛連の試料発送日から 1 日超え 1 週間以内が 192 施設と多く見られた。測定期間における試料 1 の平均値は 0.31 g/L \sim 0.32 g/L で、試料 2 は 0.55 g/L \sim 0.59 g/L であった。

表 V-14 令和 6 年度 尿中フェニルグリオキシル酸 (PGA) 測定結果の平均値と標準偏差

			試料1		試料 2	
		施設数	平均値	標準偏差	平均値	標準偏差
	測定施設	319	0.31	0.011	0.57	0.019
	未測定施設	1	-	-	-	-
	未提出施設	2	•	-	-	-
	全参加施設	322	-	-	-	-
	24 時間以内に測定	3	0.31	0.006	0.56	0.015
	1日越え1週間以内に測定	192	0.31	0.008	0.57	0.014
 (全衛連)	1週間越え2週間以内に測定	93	0.31	0.003	0.55	0.002
発送日から	2週間越え3週間以内に測定	32	0.32	0.010	0.59	0.015
光色 13 週間越えに	3週間越えに測定	2	0.31	0.007	0.57	0.007
	未記入・誤記入	0	-	-	-	-
	合計	322	-	-	-	-

(10) その他

尿中フェニルグリオキシル酸測定に関する調査票(I)の各項目で誤記入・未記入の件数とその割合を表V-15に示した。試料の到着状態、漏れの項目で誤記入・未記入が46件数(14.2%)、49件数(15.2%)と多い。

表 V-15 調査票(I)の各項目における誤記入・未記入の件数(未返送含む)とその割合

	/ 2) H// HU/ / / / LUU/ / / / LU &	X (/Redelle) C C ()
	件数	割合 (%)
試料受領日	6/322	1.9
試料受渡日	11/301	3.7
到着時の試料の状態	39/322	12.1
漏れ	41/322	12.7
破損	4/322	1.2
受渡までの保存	3/301	1.3
受渡方法	5/301	1.7
受渡記録	4/301	1.3
試料測定日	7/301	2.3
結果受領日	10/301	3.3

(11) その他

調査票(II)より、PGA の測定に用いられた分析方法は LC-MS 法と LC-UV 法の 2 種類である(その他の測定方法が 2 件数報告されている)。表 V-16 はこの 2 種類の測定値を比較した。LC-MS 法の測定が 206 件、LC-UV 法の測定が 93 件であった。試料 A、試料 B の平均値には有意差は見られない。

表 V-16 LC-MS 法と LC-UV 法による測定値の比較

	LC-N	IS 法	LC-UV 法		LC-UV 法 合計		計
	試料A	試料B	試料A	試料B	試料A	試料B	
件数	206	206	93	93	299	299	
平均値	0.31	0.57	0.31	0.57	0.31	0.57	
標準偏差	0.006	0.010	0.017	0.030	0.010	0.18	
最大値	0.32	0.59	0.35	0.64	0.35	0.64	
最小値	0.30	0.56	0.29	0.54	0.29	0.54	

Ⅵ. 考察と指導コメント

考察と指導コメント

令和6年度(第38回)精度管理調査は、前年度(第37回)と同様に、全参加施設に対してプロセス調査試料としてフェニルグリオキシル酸を送付し、測定に至るまでの一連のプロセスを評価した。また、自施設で測定を実施している参加施設には、9項目・6種類の濃度試料を配布し、これらの試料に対する測定結果の精度を調査した。本報告では、本年度の調査結果の概要を示すとともに、測定精度に課題があると考えられた施設について検討を行った。

1 信頼性の高い結果を得るための測定法バリデーション

全衛連による精度管理調査においては、精度管理試料はA参加施設に、プロセス調査試料はA参加施設およびB参加施設に送付されている。ここで、A参加施設とは、調査対象となる測定項目の一部または全項目を自施設内で測定している施設を指す。一方、B参加施設は、すべての測定項目を外部機関に委託している施設であり、測定結果は委託先(A参加施設)から報告を受けたうえで、令和6年度(第38回)労働衛生検査精度管理調査票を全衛連に提出している。B参加施設は、精度管理試料の測定を外部委託している場合であっても、使用される測定法の性能特性を十分に理解し、その手法が目的に照らして適切であることを自ら実証し、確認する責任がある。同様に、A参加施設についても、自施設で実施している測定法の性能特性を把握し、その妥当性を科学的根拠に基づいて検証することが求められる。

労働衛生分野における生物学的モニタリング試料の測定方法については、現在のところ統一的な標準法が存在していないのが現状である。一般には、全衛連が1990年に発行した『鉛健康診断のすすめ方』および『有機溶剤健康診断のすすめ方』に記載されている測定法が、実務上の参考として広く用いられている。しかしながら、発行から相当の時間が経過し、分析技術や測定環境も大きく進展していることを踏まえると、測定法の見直しや改良法の妥当性評価の継続は、精度管理の高度化に不可欠な取り組みである。実際に一部のA参加施設では、血清中インジウムの測定に誘導結合プラズマ質量分析法(ICP-MS)を、尿中代謝物の測定にはガスクロマトグラフ質量分析法(GC-MS)や液体クロマトグラフ質量分析法(LC-MS)が導入され、新たに質量分析装置に関連する専門的なスキルが求められている。

測定法の妥当性は、選択性、検量線の直線性、真度(回収率)、精度、測定範囲、検出限界および定量限界といった複数の項目に基づいて総合的に評価されるべきである。これらの理論的背景と実施手順を、A参加施設のみならずB参加施設においても十分に理解することが、測定法の妥当性を正しく評価し、信頼性の高い生物学的モニタリング

結果を得るために不可欠である。精度管理は、検査室内における測定法の安定性や信頼性を確認・維持する内部精度管理と、検査室間(施設間)における測定誤差を解析・評価する外部精度管理に大別される。これらの精度管理に関する情報を、A参加施設およびB参加施設の間で共有し、測定結果のばらつきの程度や誤差要因の解析、さらにその解決策の検討および実施を継続的に行うことが、精度管理体制の向上に必要な要素である。

2 測定結果の管理

測定結果を正確に記録し、適切に報告することは、精度管理の一環として極めて重要である。しかしながら、一部の施設においては、測定値の入力ミスが確認されており、具体的には数値の転記ミス、記載箇所の誤記、あるいは記載の漏れといった事例が散見される。これらの誤りは、測定そのものの精度とは別に、最終的なデータの信頼性を損なう要因となるため、測定後のデータ管理体制の強化が求められる。

3 測定時の留意点

各項目の測定に際しては以下に留意する必要がある。

(1) 尿中メチル馬尿酸(MHA)、馬尿酸(HA)、マンデル酸(MA)の測定に関する 留意点

自施設で測定を行っている施設では、MHA、HA、MAの各代謝物を同時に測定する方法が一般的であり、多くの場合、高速液体クロマトグラフ(HPLC)に紫外可視検出器(UV)を組み合わせた手法が用いられている。測定波長としては210~230 nmおよび254 nmが使用されているが、これらは各物質の最大吸収波長とは必ずしも一致しておらず、検出感度や特異性に影響を及ぼす可能性がある。

試料である尿は希釈後に分析されるが、保持時間が短い測定対象物質は、尿中の不純物による影響を受けやすいため、測定波形の解釈に注意が必要である。不純物による干渉が疑われる場合は、移動相の変更などにより分離条件を最適化することで、干渉の低減が可能となる場合がある。

MHAとして測定されるピークが、p-メチル馬尿酸(p-MHA)とm-メチル馬尿酸(m-MHA)の2成分の混合ピークである場合には、両者の感度が等しくなる波長で測定を行うことが望ましい。これらを分離して定量する場合には、 β -シクロデキストリンなどの分離補助剤を使用し、十分なピーク分離を確認する必要がある。

一方、GC-MSやLC-MSを用いた測定においては、定量イオンおよび確認イオンの 妥当性を確認するとともに、質量検出部の条件(例:イオン化法、選択イオンモニタ リング条件)の最適化を図ることが重要である。

(2) 尿中2,5-ヘキサンジオン (HD) の測定に関する留意点

①キャピラリーカラムの選定

測定には、無極性または中極性のキャピラリーカラムを使用すること。極性の高いカラム(例: DB-WAX)を用いた場合、尿中の加水分解生成物である2-アセチルフラン等とのピーク重複が発生し、HDの分離が困難となる。

②加水分解条件の厳守

加水分解操作(塩酸添加によるpH調整、100℃で30分加熱)を厳格に実施することが求められる。これは、HD前駆体を確実にHDへ変換するためである。加熱には、加水分解中に試験管内が常に沸騰状態を維持できる十分な容量のウォーターバスを用いること。加水分解はpH0.3~0.5の範囲で行う(参考文献:全国労働衛生団体連合会編『有機溶剤健康診断のすすめ方』)。

③抽出操作の注意点

抽出後には、水層とジクロロメタン層を十分に分離(例:遠心分離)し、酸性の水層が混入しないよう注意してジクロロメタン層を分取すること。実際の尿試料では、2-アセチルフラン以外にも小さなピークと重なる可能性があるため、カラムの長さや分析条件を適切に検討する必要がある。

④機器およびカラムの管理

生体試料には多様な不純物が含まれており、測定機器内部の汚染やカラムの劣化を引き起こす可能性がある。そのため、機器の清掃およびカラムの状態管理を定期的に行うことが望ましい。

⑤ジクロロメタンの取扱いに関する安全管理

ジクロロメタンは、国際がん研究機関(IARC)によりグループ2A(ヒトに対しておそらく発がん性がある)に分類されており、日本産業衛生学会でも第2群Aに区分されている。したがって、取り扱い時にはばく露防止対策を徹底することが必要である。

⑥生物学的許容値の対象物質について

日本産業衛生学会が定めるN・ヘキサンの生物学的許容値には、加水分解後のHDおよび加水分解を行わないHDの両方が対象物質として記載されており、測定対象および解析条件の選定に際して留意が必要である。

(3) Pb-B (血中鉛) のフレームレス原子吸光法による測定に関する留意点 血中鉛 (Pb-B) の測定にフレームレス原子吸光分析法 (グラファイトファーネス AAS) を用いる場合には、以下の点に十分留意する必要がある。 まず、試料の乾燥、灰化、原子化の各条件については、使用する電気加熱炉の種類 や使用頻度により最適条件が異なるため、事前に十分な検討を行うことが重要であ る。

検量線の作成時には、検量線試料と実際の測定試料との間にマトリクス効果による応答の差が生じる可能性があるため注意が必要である。特に、検量線試料に動物血を用いた場合、人血との成分組成の違いにより、検量線の傾きが異なる場合がある。この点は定量精度に影響を及ぼすため、使用する血液マトリクスの選定には慎重を要する。

また、測定試料の性状によっては、試料ブランクやバックグラウンドノイズが高くなる場合がある。その対策として、試料の希釈率の最適化や、分散剤として Triton X-100 を添加することが推奨されることがある。

加えて、血液試料は血球成分と血清成分から構成されており、保存中にこれらが二層に分離することがあるため、測定前には十分に混和し、均質化することが必須である。これは、鉛が主に血球成分に結合して存在しているためであり、混合不良は測定値のばらつきや低値化の原因となりうる。

(4) デルタアミノレブリン酸 (ALA) のHPLC法による測定に関する留意点

デルタアミノレブリン酸(ALA)は、紫外吸収および蛍光の強度が低いため、一般的には誘導体化試薬を用いて高吸収性または蛍光性の誘導体に変換し、HPLC(高速液体クロマトグラフ)法により高感度で測定されている。標準溶液および尿試料の測定に際しては、あらかじめ誘導体化条件(誘導化時間、温度、誘導化率)を検討・最適化することが必要である。 特に蛍光誘導体を用いる場合、生成物が紫外線により消光(蛍光強度の低下)することがあるため、試料の調製および測定の過程において紫外線の影響を避けるよう十分な注意を要する。また、多数の検体を連続して測定する場合には、時間経過による蛍光強度の低下が最小限となる条件で分析を実施する必要がある。さらに、誘導体化試薬としてホルムアルデヒドを使用する場合は、化学的有害性に十分注意し、適切な管理下での取扱いが求められる。

ホルムアルデヒドは、国際がん研究機関(IARC)によりグループ1(ヒトに対して発がん性がある)に分類されており、これは鼻咽頭がんに対する十分な科学的根拠、鼻腔・副鼻腔がんに対する限定的な証拠、ならびに白血病との強い関連性が示唆されたことに基づく評価である。また、日本産業衛生学会においても第2群A(ヒトに対しておそらく発がん性がある)に分類されており、使用時には換気の確保や個人防護具の着用など、適切なばく露防止措置を講じる必要がある

(5) N-メチルホルムアミド (NMF) の測定に関する留意点

N-メチルホルムアミド(NMF)の測定には、ガスクロマトグラフ法が用いられ、 検出には窒素化合物に対して高感度な検出器(NPD:窒素リン検出器、FTD:炎光 光度検出器)や質量分析計(MS)が使用されている。NMFは、N,N-ジメチルホルム アミド(DMF)の主な代謝産物であり、DMFにばく露された労働者の尿中には、 NMFに加え、N-ヒドロキシル-N-メチルホルムアミドも排泄されることが報告されて いる。

このN-ヒドロキシル・N-メチルホルムアミドは、GC測定の際、インジェクター内の高温により容易にNMFへと変換されるため、最終的に得られるNMFのピークは両代謝物の合計に相当すると考えられる。このため、実際のばく露評価におけるNMFの測定値は、両代謝物の総量として解釈する必要がある。

測定においては、インジェクター内の温度管理が極めて重要であり、250℃以上の 温度設定が推奨されるとの報告がある。適切な温度制御を行うことで、誘導的な変換 を安定して再現できるようになり、ばく露指標としての信頼性が向上する。

(6) トリクロロ酢酸および総三塩化物の測定に関する留意点

トリクロロ酢酸の測定には、試料をエステル化した後にガスクロマトグラフ法を用い、検出器として電子捕獲型検出器(ECD)または質量分析計(MS)が使用される。総三塩化物とは、トリクロロ酢酸とその関連代謝物であるトリクロロエタノールの合計量を指し、ばく露評価の指標として用いられている。トリクロロ酢酸は強い腐食性と潮解性を有するため、試薬の保管に際しては十分な注意が必要である。特に標準物質として用いる場合には、秤量時に吸湿による質量の変動が生じやすいため、滴定などによる濃度の補正操作を行うことが望ましい。さらに、測定に先立ち、エステル化条件(温度、反応時間、エステル化率)についての検討と最適化が必要である。反応条件が不適切な場合、生成物の収率低下や定量誤差につながる可能性がある。なお、トリクロロ酢酸は国際がん研究機関(IARC)によりグループ2B(ヒトに対する発がん性が疑われる)に分類されており、取り扱いの際には適切な個人防護具の使用および換気の徹底など、ばく露防止対策が求められる。

(7) 作業環境の整備に関する留意点

作業環境の整備は、作業従事者の健康保持および周囲環境の保全を目的として実施されるべき重要な管理項目である。とりわけ、生体試料の測定業務では、使用される化学試薬の中に有害性の高い物質が含まれることがあり、作業者がこれらにばく露されることにより、健康障害のリスクにさらされる可能性がある。また、分析過程で発生する廃液や排気が適切に処理されない場合、周囲環境に対して重大な負荷を与える恐れ

がある。現在、環境問題は地域的な公害にとどまらず、地球規模での課題として広く認識されており、測定施設においても労働衛生管理と環境保全の両面に配慮した運営が強く求められている。

環境および作業者の健康に配慮した測定業務の実施にあたっては、以下の事項に留 意することが望ましい:

① 使用物質の有害性の確認

安全データシート(SDS)を活用し、使用するすべての試薬・化学物質の有害性を事前に確認すること。

② 低有害性試薬の採用

可能な限り、有害性の低い、または無害な代替物質を用いた測定法を選定すること。

- ③ 使用量の最小化(省資源・省エネルギー) 化学物質の使用量を必要最小限とし、資源およびエネルギー消費の削減に努める。
- ④ 廃液・廃棄物の適正処理 排出物は適切な方法で処理し、環境への負荷を最小限に抑える。
- ⑤ 有害物質の拡散防止対策 密閉系の機器の使用やドラフトチャンバーの整備等により、作業空間内への化学物質の拡散を防止する。
- ⑥ 作業環境および個人ばく露濃度の測定 必要に応じて、作業環境測定および個人ばく露濃度の測定を実施し、ばく露リスク を定量的に把握する。
- ⑦ 特殊健康診断の実施 該当する化学物質を取り扱う作業者に対しては、関連法令に基づき特殊健康診断を 実施する。
- ⑧ 危機管理教育および訓練の実施

作業者に対して、有害物質のリスク、緊急時対応、保護具の適切な使用方法等に関する教育・訓練を定期的に実施する。

本調査に参加された各施設の測定業務担当者におかれては、前述の各項目に十分留意のうえ、引き続き適正かつ信頼性の高い測定業務の実施にご尽力いただきたい。

評価結果について

1 総合評価

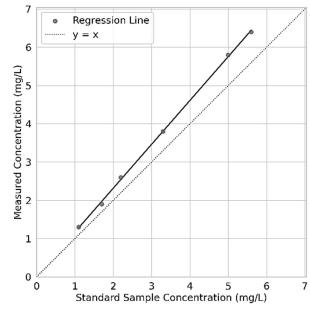
全参加施設の総合評価については表Ⅲ-1 (P-25) に記載したとおりである。精度管理調査参加 321 施設の施設評価は全施設が評価 A (85 点以上) であった。

2 各調査項目の評価

精度管理調査は、Pb-B(血中鉛)、ALA(尿中デルタアミノレブリン酸)、MHA(尿中メチル馬尿酸)、HA(尿中馬尿酸)、TCC(尿中総三塩物)、TCA(尿中トリクロル酢酸)、MA(尿中マンデル酸)、HD(尿中 2,5-ヘキサンジオン)と NMF(N-メチルホルムアミド)の 9 項目を実施しており、項目によっては一部低評価となった施設が認められた。

Ⅲ章の調査結果 1 (全体的評価結果) 掲載の表Ⅲ-3 (P-28) を参照していただくと分かるとおり、今年度評価合計点で調査項目のいずれかが評価点 85 点未満となった施設は、HD 項目 13 施設(自施設検査施設 1)、NMF 項目 1 施設(自施設検査施設 1)施設である。

調査項目の評価点が85点未満であった施設については、測定結果から考えられる原因を考察した。参加施設におかれては今後の参考にしていただき、労働衛生精度管理の向上に一層努力されたい。

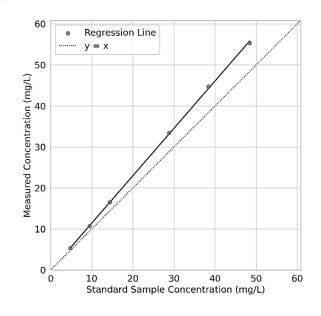

調査項目で評価点が85点未満となった施設について

【事例1】

今回、HD について評価点合計が 66 点である。HD の測定値と評価点一覧表 V-1 と HD の散布図、図 V-1 を示す。

表 V - 1 事例 1 の HD 測定値と評価点

試料番号	試料濃度	測定値	評価点
1	1.1	1.3	4
2	1.7	1.9	4
3	2.2	2.6	2
4	3.3	3.8	2
5	5.0	5.8	2
6	5.6	6.4	2
解析值	直評価	値	評価点
切	片	0.023	-
傾	き	1.146	4
再到	見性	0.056	6
tar	nθ	1.147	5
PI	PI-1		1
PI	-2	0.156	1
		合計	33
	10	00 点換算	66



回帰直線を、y=x を点線、自施設測定 A 社による測定値を実線で示している。評価点 2 は中高濃度試料での測定結果であり、試料濃度より高値である。他の試料は評価点 が 4 点の範囲であるが試料濃度が低くなるに従い、測定値が y=x に収束する傾向である。正の系統誤差(systematic error)が疑われる。また、測定法に関わる調査票に おいて、記載ミスと思われる箇所が散見される。

【事例2】当該施設は NMF の評価点が 66 点である。

表V-2 事例2のNMF測定値と評価点

1X V Z 3	エレル 7 47 141	111 N1/C IE	
試料番号	試料濃度	測定値	評価点
1	4.8	5.3	4
2	9.5	10.7	3
3	14.4	16.5	3
4	28.8	33.4	2
5	38.4	44.7	2
6	48.4	55.3	2
解析值	直評価	値	評価点
切片		-0.142	-
傾き		1.156	3
再現性		0.372	6
tar	an heta		4
PI-1		0.150	2
PI	-2	0.140	2
		合計	33
	10	00 点換算	66
	· ·	·	·

回帰直線を、y=x を点線、自施設測定 B 社による測定値を実線で示している。評価点 2 は中高濃度試料での測定結果であり、試料濃度および仕込み濃度より高値である。他の試料は評価点が 4 点の範囲であるが試料濃度が低くなるに従い、測定値が y=x に収束する傾向である。正の系統誤差(systematic error)が疑われる。測定方法の調査「調査票(その 2-3)」より、B 社に特異的な測定法の手技は、前処理で誘導体化が採用されている点である。誘導体化効率の試料間の違い、分解等が系統誤差の原因となる可能性があるので、確認いただきたい。

事例1および2について、以下に考えられる原因と対策を体系的に示すので、改善に向けて検討いただきたい。

原因の可能性

- 1. 校正標準の濃度誤差
 - 使用した標準液の調製ミス (調製時の体積誤差、秤量ミス) や保存中の劣化によって、正しい濃度になっていない可能性がある。
- 2. キャリブレーションカーブの不正確さ

- 直線性外の範囲を使用している
- キャリブレーションポイント数が少ない、またはフィッティング手法が不適切で あった可能性
- 3. マトリックス効果(尿中共存物質による影響)
 - 標準液は水や人工尿で作製されていて、実際の尿マトリックスと異なる場合、イ オン抑制や増強効果が発生することがある

(特に LC-MS/MS 法では顕著)

- 4. 内標準の誤使用
 - 内標準 (IS) 濃度の誤設定、分解、混合ミス
 - 異なるロットでの感度差

対策案

- 1. 標準液の精密な調製と保存
 - たとえば JIS や ISO 規格に準拠した調製手順を遵守
 - 新鮮な標準液を使用し、冷暗所で保管(特に HD など安定性に懸念がある化合物)
- 2. キャリブレーションの見直し
 - 最低でも5点以上の濃度範囲で、実際の測定範囲をカバー
 - 線形回帰と決定係数 (R2) を記録し、検量線の妥当性を毎バッチ確認
 - 添加回収試験 (spike recovery) や相関係数の比較
- 3. マトリックス一致標準試料(matrix-matched standards)を使用
 - 測定対象と同じマトリックス (例:ヒト尿) で標準液を作製し、マトリックス効果を補正
- 4. 内部標準の管理強化
 - 安定同位体を使った IS の使用推奨(濃度・精製度・安定性を記録)
 - IS の調製履歴やバリデーションデータの記録を厳密に行う
- 5. ブランク・QC 試料の定期測定
 - 洗浄効果のある測定間ブランク(solvent blank)を入れる
 - QC 試料(高・中・低濃度)で再現性と正確性を日常管理

《まとめ》

本精度管理試料による測定結果の評価から、各測定値は概ね標準値と良好な相関を示し、測定系全体の再現性および信頼性が確保されていることが確認された。

しかし、一部の測定項目に対して系統誤差が認められた施設もあり、全衛連および 本委員会が定めた許容範囲を超える測定結果が見られた。早急な原因探索と改善をお 願いしたい。

Ⅲ. 集計結果調査票(その3)

1. 調査の目的

特殊健康診断に於いて、鉛健康診断では、鉛を取り扱う労働者の血中鉛量と尿中デルタアミノレブリン酸量を測定し、特に必要と認めたものに対しては、赤血球中の遊離プロトポルフィリン量の測定も実施することとなっている。また、有機溶剤ではキシレン・N,N-ジメチルホルムアミド・1,1,1-トリクロロエタン・トルエン・ノルマルへキサンの 5溶剤と、特別有機溶剤ではスチレン・テトラクロロエチレン・トリクロロエチレン・エチルベンゼン(塗装業務のみ)の 4 溶剤を取り扱う労働者についてそれぞれ指定の尿中代謝物(メチル馬尿酸・N-メチルホルムアミド・2,5-ヘキサンジオン・トリクロロ酢酸・総三塩化物・マンデル酸・馬尿酸)の量を、特化物のインジウムでは血清インジウムの量を測定することとなっている。

全衛連では、例年全衛連の精度管理調査に参加した健診診断施設等における、鉛・有機溶剤・特化物健康診断に係る代謝物等の測定の実施状況及び施設における内部、外部精度管理の状況等を把握することを目的として補助調査票を用いて調査している。

2. 調査実施時期

令和6年10月

3. 調査対象施設

特殊健康診断実施施設と特殊健康診断に係る代謝物の測定を行っている登録衛生検査所施設。

4. 調査の内容

巻末に添付の調査票のとおり。

記入に際しては、検査実施数等の実績を求めた部分につては令和5年度の実績数 を、その他項目については調査票記入日現在の状況としている。

5. 回答状況(複数回答の集計結果あり)

労働衛生検査精度管理調査参加全施設数 322 施設のうち、調査票回収施設数は 296 施設、回収率は 91.9%。回収した 296 施設の調査票記入による参加方法の施設数内訳は「 A 参加 」 28 施設、「 B 参加 」 266 施設、A、B 参加未記入 B 2 施設であった。

6. 代謝物測定件数と特殊健康診断実施件数について

今回の調査に参加した健康診断施設と登録衛生検査所に令和5年度に実施した鉛・有機溶剤・特定化学物質健康診断および代謝物測定実施状況について回答いただいた。

代謝物測定実施件数を「表VI·1 代謝物等の測定実施件数(A 参加施設対象 令和5年

度実績)」に、調査参加健康診断施設が実施した項目ごとの特殊健康診断実施状況示を「表VI-2 鉛・有機溶剤・特定化学物質の特殊健康診断実施状況(令和5年度実績)」に示した。

なお、「表VI-2 鉛・有機溶剤・特定化学物質の特殊健康診断実施状況(令和5年度実績)」に示す特殊健康診断実施件数とは、本精度管理調査に参加した施設が実施した件数であり、「表VI-1 代謝物等の測定実施件数(A参加施設対象 令和5年度実績)」に示す代謝物測定実施件数は、本精度管理調査に参加していない施設から測定受託した件数が含まれており注意が必要である。

1. 金属·有機溶剤·特定化学物質健康診断および代謝物測定実施状況 (令和 5 年度実績)

表VI-1 代謝物等の測定実施件数(A参加施設対象 令和5年度実績) *令和6年度回答施設296施設

· PARS 1 /Z	回答施設296施設	左座	測定実施	調査参加	測定実施
	測 定 物 質 	年度	回答施設	施設割合	件数
鉛		第38回	14	4.7%	105,617
	血中鉛	第37回	14	5.1%	107,968
		第36回	14	4.9%	105,114
		第38回	12	4.4%	105,666
	尿中 デルタアミノレブリン 酸	第37回	12	4.4%	105,872
		第36回	12	4.2%	103,714
	赤血球中 プロトポルフィリン	第38回	4	1.5%	7,987
		第37回	4	1.5%	2,702
		第36回	4	1.4%	2,484
		第38回	25	8.4%	551,389
	尿中 メチル 馬尿酸	第37回	25	9.1%	540,477
		第36回	25	8.8%	502,311
	尿中 馬尿酸	第38回	25	8.4%	712,286
		第37回	25	9.1%	700,644
		第36回	25	8.8%	653,880
		第38回	12	4.1%	168,585
	尿中 2,5 - ヘキサンジオン	第37回	12	4.4%	166,060
		第36回	12	4.2%	155,999
		第38回	8	2.7%	21,087
	尿中 総三塩化物	第37回	8	2.9%	22,025
		第36回	8	2.8%	21,637
		第38回	7	2.4%	12,835
	尿中 トリクロル酢酸	第37回	7	2.6%	12,106
		第36回	7	2.5%	13,111
機溶剤	尿中 マンデル酸	第38回	25	8.4%	321,187
		第37回	25	9.1%	315,170
# 다리 루스 남성 V는 중에		第36回	25	8.8%	263,933
特別有機溶剤・特定化学物質	尿中 N - メチルホルムアミド尿中 マンデル酸 + フェニルグリオキシル酸	第38回	10	3.4%	73,745
		第37回	10	3.6%	73,017
		第36回	10	3.5%	68,482
		第38回	15	5.1%	148,494
		第37回	15	5.5%	152,845
		第36回	13	5.3%	158,715
	日中土の1、1のフバン	第38回	1	0.3%	0
	尿中 オルトートルイジン	第37回	1	0.4%	0
		第36回	1	0.4%	1
	尿中 3,3'-ジクロロ-4,4'-ジアミノ ジフェニルメタン(MOCA)	第38回	2	0.7%	263
		第37回	2	0.7%	217
		第36回	2	0.7%	72
	尿中 メチルイソブチルケトン (MIBK)	第38回	7	2.4%	16,072
		第37回	7	2.6%	13,426
	` ′	第36回	7	2.5%	7,095
	尿中 アンチモン	第38回	4	1.4%	2,442
		第37回	4	1.5%	2,378
	血清 インジウム	第36回	3	1.1%	1,711
		第38回	7	2.4%	26,844
		第37回	7	2.6%	26,096
		第36回	6	2.1%	18,633
		第38回	7	2.4%	10,484
		第37回	7	2.6%	9,739
		第36回	7	2.5%	9,384

表VI-2 鉛·有機溶剤·特定化学物質の特殊健康診断実施状況(令和5年度実績) *令和5年度回答施設296施設

健	康 診 断 項 目	年 度	回答(実施) 施設数	調査参加 施設割合	健診実施 件数
		第38回	233	78.7%	64,678
	鉛	第37回	206	75.2%	61,012
		第36回	211	72.3%	61,325
		第38回	248	83.8%	308,295
	キシレン	第37回	221	80.7%	288,451
		第36回	224	77.5%	286,713
	トルエン	第38回	246	83.1%	392,748
		第37回	220	80.3%	387,112
		第36回	224	77.2%	408,072
	ノルマルヘキサン	第38回	239	80.7%	99,905
		第37回	214	78.1%	94,820
		第36回	216	75.1%	93,562
		第38回	159	53.7%	5,238
	1.1.1-トリクロロエタン	第37回	136	49.6%	2,748
-		第36回	140	47.7%	3,165
		第38回	198	66.9%	15,459
	トリクロロエチレン	第37回	166	60.6%	12,098
-		第36回	174	58.2%	9,471
		第38回	171	57.8%	6,803
	テトラクロロエチレン	第37回	152	55.5%	4,177
		第36回	151	53.3%	4,125
		第38回	238	80.4%	225,974
有機溶剤	エチルベンゼン	第37回	211	77.0%	201,177
• 4+ 111 → 146 35 51		第36回	214	74.0%	196,603
特別有機溶剤		第38回	219	74.0%	44,871
特定化学物質	<i>N,N-</i> ジメチルホルムアミド	第37回	201	73.4%	42,456
147618 1 1778		第36回	200	70.5%	40,436
	スチレン	第38回	235	79.4%	68,952
		第37回	212	77.4%	67,160
		第36回	211	74.4%	70,973
	オルトートルイジン	第38回	87	29.4%	1,240
		第37回	70	25.5%	1,186
		第36回	72	24.6%	1,316
	3,3'-ジクロロ-4,4'-ジアミノ ジフェニルメタン (MOCA)	第38回	120	40.5%	5,447
		第37回	100	36.5%	5,251
		第36回	106	35.1%	5,524
	メチルイソブチルケトン (MIBK)	第38回	195	65.9%	110,861
		第37回	170	62.0%	101,535
		第36回	173	59.6%	93,072
	三酸化二アンチモン	第38回	143	48.3%	23,632
		第37回	124	45.3%	21,505
		第36回	120	43.5%	16,446
	インジウム	第38回	174	58.8%	18,612
		第37回	146	53.3%	16,268
		第36回	143	51.2%	16,789
	カドミウム	第38回	156	52.7%	6,169
		第37回	136	49.6%	5,314
		第36回	133	47.7%	4,886

2 検体の採取・受領・保存状況

2-1 特殊健康診断の代謝物採取時期の事前指導・説明

特殊健康診断において尿代謝物の採取を何時にするかは大切なことである。健診実施機関が、尿代謝物の採取時期が適切でないと検査結果に大きく影響することを健康診断実施前に事業所担当者、受診者に対して周知を行っているか、また、その周知をどのように行っているか設問「2-1特殊健康診断の代謝物採取時期の事前指導・説明」で回答を求めた

表VI-3 に、調査票(その3)の設問に対する回答結果を参加方法別に示す。 割合%の数字は選択した参加方法の施設数を母数とした。複数回答あり。

表VI-3 特殊健康診断の代謝物採取時期の事前指導・説明

	設問	参加方法	施設数	回答数	(%)	未回答
	健康診断実施前に尿採取時期につい	A	28	0	0%	6
a		В	266	21	7.9%	8
	て特段の説明はしていない。	AB 不明	2	0	0%	8
	健康診断実施前に尿採取時期に関	A	28	5	17.9%	6
b	する注意事項を事業場担当者に口頭	В	266	104	39.1%	8
	で説明する。	AB 不明	2	0	0%	8
	健康診断実施前に尿採取時期に関	A	28	4	14.3%	6
С	する注意事項を記載した文書によって	В	266	71	26.7%	8
	担当者に周知している。	AB 不明	2	1	50.0%	8
	健康診断実施前に尿採取時期に関	A	28	7	25.0%	6
d	する注意事項を記載した文書によって	В	266	90	33.8%	8
	受診者を含め全員に周知している。	AB 不明	2	1	50.0%	8
		A	28	0	0%	6
e	その他周知方法。	В	266	5	1.9%	8
		AB 不明	2	0	0%	8
		A	28	8	28.6%	6
f	特殊健康診断を実施していない。	В	266	8	3.0%	8
		AB 不明	2	0	0	8

その他の周知方法を選択した施設からは以下の書き込みが見られた。

- 注意点を掲示案内する。
- 事業所側の都合により対応を変える。・事業所ごとに対応が異なる。
- 尿を採取した後、提出する袋の裏面に採尿時間に関する注意事項を載せている。(袋と容器をセットで渡す)
- 口頭の他に、受診票送付時に担当者向けに注意事項を同封。
- 指示の事業所には、注意事項を全員に配布する。

2-2 特殊健康診断の代謝物等の採取時期

設問「2-2特殊健康診断代謝物等の採取時期(時間)」では、登録衛生検査所及び特殊健康 診断を実施していない施設を除き、実際に施設が特殊健康診断を実施した際の尿代謝物採取 時期について回答を求めた。表VI-4(重複回答有)に集計結果を示す。

表VI-4 尿代謝物等の採取時期

採取対象	参加方法	1木以时为		回 答	数		
物質	回答施設	作業開始前	随時	終了時	連続作業終了時	その他	未回答
	A	0	13	1	0	0	14
	14施設	(0.0%)	(4.4%)	(0.3%)	(0.0%)	(0.0%)	(4.7%)
血中	В	6	185	14	23	4	41
鉛	211施設	(2.0%)	(62.5%)	(4.7%)	(7.8%)	(1.4%)	(13.9%)
	C	0	2	0	0	0	0
	2施設	(0.0%)	(0.7%)	(0.0%)	(0.0%)	(0.0%)	(2.0%)
	A	0	12	2	2	0	14
尿中	14施設	(0.0%)	(4.1%)	(0.7%)	(0.7%)	(0.0%)	(4.7%)
デルタア	В	9	167	23	27	6	45
ミノレブ	215施設	(3.0%)	(56.4%)	(7.8%)	(9.1%)	(2.0%)	(15.2%)
リン酸	С	0	2	0	0	0	0
	2施設	(0.0%)	(0.7%)	(0.0%)	(0.0%)	(2.0%)	(0.0%)
	A	0	4	1	0	0	23
赤血球中	5施設	(0.0%)	(1.4%)	(0.3%)	(0.0%)	(0.0%)	(2.0%)
が皿塚中 プロトポ	В	3	88	10	14	4	150
ルフィリ	112施設	(1.1%)	(29.7%)	(3.4%)	(4.7%)	(1.4%)	(50.7%)
ン	С	0	1	0	0	0	0
	1施設	(0.0%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)
	A	0	3	6	5	0	14
	14施設	(0.0%)	(1.0%)	(2.0%)	(1.7%)	(0.0%)	(4.7%)
尿中	В	6	107	62	87	5	25
メチル馬 尿酸	236施設	(2.0%)	(36.1%)	(20.9%)	(29.4%)	(1.7%)	(8.4%)
	С	0	1	1	0	0	0
	2施設	(0.0%)	(0.3%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)
	A	0	3	6	5	0	14
	14施設	(0.0%)	(1.0%)	(2.0%)	(1.7%)	(0.0%)	(4.7%)
尿中	В	6	107	62	86	5	26
馬尿酸	235施設	(2.0%)	(36.1%)	(20.9%)	(29.1%)	(1.7%)	(8.8%)
	С	0	1	1	0	0	0
	2施設	(0.0%)	(0.3%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)
	A	0	3	6	5	0	14
	14施設	(0.0%)	(1.0%)	(2.0%)	(1.7%)	(0.0%)	(4.7%)
尿中	В	6	104	61	83	5	33
2,5-ヘキサ ンジオン	228施設	(2.0%)	(35.1%)	(20.6%)	(28.0%)	(1.7%)	(11.1%)
	С	0	1	1	0	0	0
	2施設	(0.0%)	(0.3%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)

母数:296、重複回答あり、

回答合計:「開始前」,「随時」,「終了時」,「連続作業期間後半終了時」のいずれかに"〇"を記入した施設数

表VI-4 尿代謝物等の採取時期

表 VI-4 旅代表 採取対象	参加方法	174.4791		回答	数 数		
物質	回答施設	作業開始前	随時	終了時	連続作業終了時	その他	未回答
	A	0	3	3	6	0	16
	12施設	(0.0%)	(1.0%)	(1.0%)	(2.0%)	(0.0%)	(5.4%)
尿中 総三塩化	В	5	86	32	86	4	72
総三塩化 物	190施設	(1.7%)	(29.1%)	(10.8%)	(29.1%)	(1.4%)	(24.3%)
	C	0	1	0	0	0	0
	1施設	(0.0%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)
	A	0	1	2	4	0	21
	7施設	(0.0%)	(0.3%)	(0.7%)	(1.4%)	(0.0%)	(7.1%)
尿中 トリクロ	В	4	68	26	71	6	109
ロ酢酸	151施設	(1.4%)	(23.0%)	(8.8%)	(24.0%)	(2.0%)	(36.8%)
	С	0	1	0	1	0	3
	2施設	(0.0%)	(0.3%)	(0.0%)	(0.3%)	(0.0%)	(1.0%)
	A	0	3	6	5	0	14
	14施設	(0.0%)	(1.0%)	(2.0%)	(1.7%)	(0.0%)	(4.7%)
尿中	В	7	105	59	84	3	34
マンデル 酸	229施設	(2.4%)	(35.5%)	(19.9%)	(28.4%)	(1.0%)	(11.5%)
	С	0	1	1	0	0	0
	2施設	(0.0%)	(0.3%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)
	A	0	3	6	5	0	14
尿中	14施設	(0.0%)	(1.0%)	(2.0%)	(1.7%)	(0.0%)	(4.7%)
	В	5	99	54	78	6	48
ホルムア	212施設	(1.7%)	(33.4%)	(18.2%)	(26.4%)	(2.0%)	(16.2%)
ミド	С	0	1	1	0	0	0
	2施設	(0.0%)	(0.3%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)
	A	5	3	6	4	0	15
尿中	13施設	(1.7%)	(1.0%)	(2.0%)	(1.4%)	(0.0%)	(5.1%)
マンデル 酸+	В	5	95	48	78	4	60
フェニル	202施設	(1.7%)	(32.1%)	(16.2%)	(26.4%)	(1.4%)	(21.9%)
グリオキ シル酸	С	0	1	1	0	0	0
J / F EX	2施設	(0.0%)	(0.3%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)
	A	0	1	1	2	0	24
	4施設	(0.0%)	(0.3%)	(0.3%)	(0.7%)	(0.0%)	(8.1%)
尿中	В	2	47	17	17	8	181
オルトート ルイジン	77施設	(0.7%)	(15.9%)	(5.7%)	(5.7%)	(2.7%)	(61.1%)
	С	0	1	0	0	0	1
	1施設	(0.0%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)	(0.3%)
母数·296 重	さに なかず か	/	/	/	/	/	/

母数:296、重複回答あり、

回答合計:「開始前」、「随時」、「終了時」、「連続作業期間後半終了時」のいずれかに"〇"を記入した施設数

表VI-4 尿代謝物等の採取時期

採取対象	参加方法			回答	数		
物質	回答施設	作業開始前	随時	終了時	連続作業終了時	その他	未回答
	A	0	1	4	2	0	21
尿中	7施設	(0.0%)	(0.3%)	(1.4%)	(0.7%)	(0.0%)	(7.1%)
3,3'-ジクロ ロ-4.4'-ジア	В	2	63	16	31	7	156
ミノジフェ	103施設	(0.7%)	(21.3%)	(5.4%)	(10.5%)	(2.4%)	(52.7%)
ミノシノエニルメタン	С	0	0	0	0	0	2
	0施設	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.7%)
	A	0	2	5	1	0	20
尿中	8施設	(0.0%)	(0.7%)	(1.7%)	(0.3%)	(0.0%)	(6.8%)
メチルイ ソブチル	В	5	76	33	36	8	121
ケトン	137施設	(1.7%)	(25.7%)	(11.1%)	(12.2%)	(2.7%)	(40.9%)
(MIBK)	С	0	0	0	0	1	1
	0施設	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.3%)	(0.3%)
	A	0	3	2	2	0	21
	7施設	(0.0%)	(1.0%)	(0.7%)	(0.7%)	(0.0%)	(7.1%)
尿中 アンチモ	В	2	61	18	27	6	160
ング・	100施設	(0.7%)	(20.6%)	(6.1%)	(9.1%)	(2.0%)	(54.1%)
	С	0	0	0	0	1	1
	0施設	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.3%)	(0.3%)
	A	0	10	1	0	0	17
	11施設	(0.0%)	(3.4%)	(0.3%)	(0.0%)	(0.0%)	(5.7%)
血清	В	3	139	13	21	2	94
インジウ ム	170施設	(1.0%)	(47.0%)	(4.4%)	(7.1%)	(0.7%)	(31.8%)
	С	0	1	0	0	0	1
	1施設	(0.0%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)	(0.3%)
	A	0	8	2	0	0	18
血中 カドミウ ム	10施設	(0.0%)	(2.7%)	(0.7%)	(0.0%)	(0.0%)	(6.1%)
	В	2	126	13	17	3	109
	154施設	(0.7%)	(42.6%)	(4.4%)	(5.7%)	(1.0%)	(36.8%)
	С	0	1	0	0	0	1
	1施設	(0.0%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)	(0.3%)
平粉,206		/-/	/	/-/	/	/	/

母数:296

重複回答:

回答合計: 「開始前」,「随時」,「終了時」,「連続作業期間後半終了時」のいずれかに"〇"を記入した施設数

表VI-4 の尿代謝物採取時期について、血中鉛から血中カドミウムまでの「その他」の欄に記述された内容を要約したものを以下に示す。

- 採取を健診と同時実施
- 容器を事前配付し、健診日回収
- 採取日と健診実施日を分ける
- 健診日以外の作業終了時
- 採取日程を週後半の午後とする
- 連続した作業日の初日は除いた指定日・時間
- 事業所の意向(医師の判断)による

2-3 健康診断現場での検体の採取・保存

特殊健康診断を実施している機関を対象に、健康診断施設及び巡回健診実施時における血液・尿代謝物の採取日(健診前・同時・健診後)について。検体の搬送から検体を受領して測定するまでの過程について回答いただいた。回答結果を表VI-5-1から表VI-5-6に示す。(重複回答有)

表VI-5-1 検体採取日

	回答施設数							
参加方法	前日採取 a 健診当日 回収	b 健診当日 回収	c 健診翌日 回収	d その他	未回答			
A	6	11	5	4	15			
28 施設	(2.0%)	(3.7%)	(1.7%)	(1.4%)	(5.1%)			
В	37	80	9	19	163			
266 施設	(12.5%)	(27.0%)	(3.0%)	(6.4%)	(55.1%)			
AB 不明	1	0	0	0	1			
2 施設	(0.3%)	(0.0%)	(0.0%)	(0.0%)	(0.3%)			

検体採取日については、「その他」の記述内容から先方事業所の勤務状況の都合で左右 される状況がうかがわれた。

表VI-5-2 検体測定までの搬送者

	回答施設数							
参加方法	健診 a _{スタッフ}	b 検査施設 集配担当	c 第三者 (搬送業者)	d その他	未回答			
A	10	1	2	0	15			
28 施設	(3.4%)	(0.3%)	(0.7%)	(0.0%)	(5.1%)			
В	49	62	2	4	163			
266 施設	(16.6%)	(20.9%)	(0.7%)	(1.4%)	(55.1%)			
AB 不明	0	1	0	0	1			
2 施設	(0.0%)	(0.3%)	(0.0%)	(0.0%)	(0.3%)			

表VI-5-3 検体搬送時の温度管理について

			回答施設数		
参加方法	a 常温	b 保冷剤 使用	c 可搬·設置 冷蔵庫	d その他	未回答
A	1	11	2	0	15
28 施設	(0.3%)	(3.7%)	(0.7%)	(0.0%)	(5.1%)
В	4	97	6	3	164
266 施設	(1.4%)	(32.8%)	(2.0%)	(1.0%)	(55.4%)
AB 不明	0	0	1	0	1
2 施設	(0.0%)	(0.0%)	(0.3%)	(0.0%)	(0.3%)

表VI-5-4 検体の授受の記録について

61.131	回答施設数					
参加方法	a bb	b なし	c その他	未回答		
A 28 施設	13 (4.4%)	0 (0.0%)	0 (0.0%)	15 (5.1%)		
B 266 施設	100 (33.8%)	3 (1.0%)	0 (0.0%)	163 (55.1%)		
AB 不明 2 施設	0 (0.0%)	1 (0.3%)	0 (0.0%)	(0.3%)		

3 検体の受領・保存

3-1 検査依頼での検査受託機関での血液・尿検体の受領・保存

特殊健康診断実施施設に所属する衛生検査所および施設・巡回健診機関から血液・尿代謝物測定等を受託している登録衛生検査所(A 参加施設を想定)を対象に、検体を受領してから測定するまでの過程について調査した。表VI-6-1から表VI-6-4に結果を示す。

表VI-6-1 他施設から検査を受託している

	回答施設数					
参加方法	a 検査受託 機関である	b 検査受託 機関でない	未回答			
A	18	8	228			
28 施設	(6.1%)	(2.7%)	(77.0%)			
В	7	31	228			
266 施設	(2.4%)	(10.5%)	(77.0%)			
AB 不明	0	0	2			
2 施設	(0.0%)	(0.0%)	(0.7%)			

衛生検査所を併設していても、あえてB参加を選択している施設があることが、A参加施設を対象に行った質問にB参加施設からも回答があったことから窺える。

表VI-6-2 検体の受領について

			回答施設数		
参加方法	a 検査担当者 直接	b 検査施設 集配担当者	c 第三者機関 (搬送業者)	d その他	未回答
A	4	13	5	7	2
28 施設	(1.5%)	(4.4%)	(1.7%)	(2.4%)	(0.7%)
В	5	63	2	0	2
266 施設	(1.7%)	(21.3%)	(0.7%)	(0.0%)	(0.7%)
AB 不明	0	1	1	0	4
2 施設	(0.0%)	(0.3%)	(0.3%)	(0.0%)	(1.5%)

受け渡し状況により a・b 回答施設でも搬送業者を利用する場合があることがその他の回答から見られた。

表VI-6-3 検体の受領から検査施設までの温度管理について

	回答施設数						
参加方法	a 常温	b 保冷剤 使用	c 可搬・設置 冷蔵庫	d その他	未回答		
A	1	18	0	2	8		
28 施設	(0.3%)	(6.1%)	(0.0%)	(0.7%)	(2.7%)		
В	1	23	4	1	238		
266 施設	(0.3%)	(7.8%)	(1.4%)	(0.3%)	(80.4%)		
AB 不明	0	0	0	0	2		
2 施設	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.7%)		

表VI-6-2の回答同様、その他の記述から状況により使用する機材を選択されている。

表VI-6-4 検体の授受の記録について

	回答施設数						
参加方法	a あり	b なし	c その他	未回答			
A	20	0	0	8			
28 施設	(6.8%)	(0.0%)	(0.0%)	(2.7%)			
В	27	1	0	238			
266 施設	(9.1%)	(0.3%)	(0.0%)	(80.4%)			
AB 不明	2	0	0	2			
2 施設	(0.7%)	(0.0%)	(0.0%)	(0.7%)			

4. 精度管理実施状況(A · B 参加施設対象)

4-1 標準作業書·個人情報保護管理·廃棄物管理状況

集計結果を表VI-7-1 から表VI-7-3 にしめす。

表VI-7-1 標準作業書の有無

参加方法	回答施設数				
参加万伍 	有	無	未回答		
A	28	0	0		
28 施設	(9.5%)	(0.0%)	(0.0%)		
В	252	14	0		
266 施設	(85.1%)	(4.7%)	(0.0%)		
AB 不明	2	0	0		
2 施設	(0.7%)	(0.0%)	(0.0%)		

表VI-7-2 個人情報管理体制の有無

参加方法	回答施設数				
参加方伝	有	無	未回答		
A	28	0	0		
28 施設	(9.5%)	(0.0%)	(0.0%)		
В	263	2	1		
266 施設	(88.9%)	(0.7%)	(0.3%)		
AB 不明	2	0	0		
2 施設	(0.7%)	(0.0%)	(0.0%)		

表VI-7-3 廃棄物処理の管理体制の有無

参加方法	回答施設数				
参加力伝	有	無	未回答		
A	28	0	0		
28 施設	(9.5%)	(0.0%)	(0.0%)		
В	263	2	1		
266 施設	(88.9%)	(0.7%)	(0.3%)		
AB 不明	2	0	0		
2 施設	(0.7%)	(0.0%)	(0.0%)		

4-2 (精度管理体制) 検体検査の精度の確保に係わる責任者の選定

選任有無について表VI-8-1に示す。

表VI-8-1 精度の確保に係わる責任者の選定

 参加方法	回答施設数				
参加万 伍	有	無	未回答		
A	28	0	0		
28 施設	(9.5%)	(0.0%)	(0.0%)		
В	245	17	4		
266 施設	(82.8%)	(5.7%)	(1.4%)		
AB 不明	2	0	0		
2 施設	(0.7%)	(0.0%)	(0.0%)		

表VI-8-1 で示した精度の確保に係わる責任者の選定で、有りと回答した施設の責任者の職位・職制について参加方法ごとに表VI-8-2 から表VI-8-4 に集計した結果を示す。

表VI-8-2 A 参加施設

職種	回答有施設 30 施設					
4007里	所長・局長 クラス	部長・次長 クラス	課長・補佐 クラス	その他	未回答	
医師	7	2	0	1	0	
区叫	(2.4%)	(0.7%)	(0.0%)	(0.3%)	(0.0%)	
臨床検査技師	0	3	6	7	1	
端外便宜汉明	(0.0%)	(1.0%)	(2.0%)	(2.4%)	(0.3%)	
その他	0	0	0	3	0	
	(0.0%)	(0.0%)	(0.0%)	(1.0%)	(0.0%)	

表VI-8-3 B参加 242 施設

職種	回答総数 261					
相联作里	所長・局長 クラス	部長・次長 クラス	課長・補佐 クラス	その他	未回答	
医師	89	8	1	2	3	
	(30.1%)	(2.7%)	(0.3%)	(0.7%)	(1.0%)	
│ │臨床検査技師	2	29	66	41	0	
	(0.7%)	(9.8%)	(22.3%)	(13.9%)	(0.0%)	
その他	1	6	10	3	0	
C *> E	(0.3%)	(2.0%)	(3.4%)	(1.0%)	(0.0%)	

表VI-8-4 AB 不明 6 施設

職種	回答総数 2					
州联7里	所長・局長 クラス	部長・次長 クラス	課長・補佐 クラス	その他	未回答	
医師	1	0	0	0	0	
区削	(0.3%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	
臨床検査技師	0	0	1	0	0	
端外快到汉刚	(0.0%)	(0.7%)	(0.3%)	(0.0%)	(0.4%)	
その他	0	0	0	0	0	
	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	

4-3 教育研修(過去3年間検体検査に係わる研修・講習会受講の実績)

各会が主催する研修会に、どのような担当者が受講しているのかを調査した。結果を表VI-9-1 から表VI-9-7 に示す。(複数回答あり)

表VI-9-1 全国労働衛生団体連合会

参加方法	担当名					
参加力伝	精度管理責任者	技術管理責任者	測定·分析担当者	検体搬送担当者	渉外(営業)担当者	
A	3	3	11	2	2	
28 施設	(1.0%)	(1.0%)	(3.7%)	(0.7%)	(0.7%)	
В	35	28	27	18	34	
266 施設	(11.8%)	(9.5%)	(9.1%)	(6.1%)	(11.5%)	
AB 不明	0	1	0	0	0	
2 施設	(0.0%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)	

表VI-9-2 日本医師会

┃ 参加方法 ┃	担当名				
参加力伝	精度管理責任者	技術管理責任者	測定·分析担当者	検体搬送担当者	渉外(営業)担当者
A	6	4	2	0	0
28 施設	(2.0%)	(1.4%)	(0.7%)	(0.0%)	(0.0%)
В	28	12	15	1	0
266 施設	(9.5%)	(4.1%)	(5.1%)	(0.3%)	(0.0%)
AB 不明	0	0	0	0	0
2 施設	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)

表VI-9-3 日本臨床衛生検査技師会

2011 / J D T M	农村75 日平岬/F南王恢且汉即公					
参加方法	担当名					
参加万伝	精度管理責任者	技術管理責任者	測定•分析担当者	検体搬送担当者	渉外(営業)担当者	
A	7	5	7	0	0	
28 施設	(2.4%)	(1.7%)	(2.4%)	(0.0%)	(0.0%)	
В	36	31	42	4	1	
266 施設	(12.2%)	(10.5%)	(14.2%)	(1.4%)	(0.3%)	
AB 不明	0	1	1	0	0	
2 施設	(0.0%)	(0.3%)	(0.3%)	(0.0%)	(0.0%)	

表VI-9-4 日本衛生検査所協会

参加方法	担当名				
多加力拉	精度管理責任者	技術管理責任者	測定·分析担当者	検体搬送担当者	渉外(営業)担当者
A	6	4	4	1	1
28 施設	(2.0%)	(1.4%)	(1.4%)	(0.3%)	(0.3%)
В	12	9	9	2	3
266 施設	(4.1%)	(3.0%)	(3.0%)	(0.7%)	(1.0%)
AB 不明	0	0	0	0	0
2 施設	(0.0%)	(0.0%)	(0.4%)	(0.0%)	(0.0%)

表VI-9-5 日本総合健診医学会

参加方法	担当名					
多加力伝	精度管理責任者	技術管理責任者	測定·分析担当者	検体搬送担当者	渉外(営業)担当者	
A	1	1	0	0	0	
28 施設	(0.3%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)	
В	40	23	20	2	4	
266 施設	(13.5%)	(7.8%)	(6.8%)	(0.7%)	(1.4%)	
AB 不明	0	0	0	0	0	
2 施設	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)	

表VI-9-6 施設内研修·講習会

 参加方法	担当名							
多加力伝	精度管理責任者	技術管理責任者	測定·分析担当者	検体搬送担当者	渉外(営業)担当者			
A	8	7	12	6	6			
28 施設	(2.7%)	(2.4%)	(4.1%)	(2.0%)	(2.0%)			
В	50	39	43	35	39			
266 施設	(16.9%)	(13.2%)	(14.5%)	(11.8%)	(13.2%)			
AB 不明	0	0	0	0	0			
2 施設	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)			

表VI-9-7 その他の団体が主催する研修会

参加方法	担当名							
多加力伝	精度管理責任者	技術管理責任者	測定·分析担当者	検体搬送担当者	渉外(営業)担当者			
A	2	1	2	0	0			
28 施設	(0.7%)	(0.3%)	(0.7%)	(0.0%)	(0.0%)			
В	18	12	20	2	3			
266 施設	(6.1%)	(4.1%)	(6.8%)	(0.7%)	(1.0%)			
AB 不明	0	0	0	0	0			
2 施設	(0.0%)	(0.0%)	(0.0%)	(0.0%)	(0.0%)			

その他の団体として記入のあった団体名としてはメーカー主催の研修会の他に以下の様な団体名が見られた。以下に示す。

記入のあった団体

 日本人間ドック学会
 日本産業衛生学会
 産業医研修会

 日本臨床細胞学会
 予防医学事業中央会
 東京都保健医療局

 日本不整脈心電学会
 日本作業環境測定協会
 都道府県医師会

4-4 内部精度管理

自施設で検体検査を実施している A 参加施設 26 施設を対象に設問に示した項目について使用してるコントロール試料について調査した結果を表VI-10 に示す。

表VI-10 内部精度管理

		印作及目		for the ote						State of the state	
測定	測定実施	- 27/11/6-		∮入頻度	- 11		ール試料に			使用濃度数	
物質名	施設数	日単位毎	定検査毎	定検体毎	その他	自家製	市販品	その他	1濃度	2濃度	3濃度以上
鉛	15	4	6	7	0	10	5	5	4	8	3
μц	(53.6%)	(26.7%)	(40.0%)	(46.7%)	(0.0%)	(66.7%)	(33.3%)	(33.3%)	(26.7%)	(53.3%)	(20.0%)
デルタア ミノレブ	13	4	5	6	0	11	2	2	5	8	0
リン酸	(46.4%)	(30.8%)	(38.5%)	(46.2%)	(0.0%)	(84.6%)	(15.4%)	(15.4%)	(38.5%)	(61.5%)	(0.0%)
プロト	4	2	2	1	0	3	0	0	1	2	0
ポルフィ リン	(14.3%)	(50.0%)	(50.0%	(25.0%)	(0.0%)	(75.0%)	(0.0%)	(0.0%)	(25.0%)	(50.0%)	(0.0%)
メチル馬	26	12	7	9	0	24	4	2	10	15	1
尿酸	(92.9%)	(46.2%)	(26.9%	(34.6%)	(0.0%)	(92.3%)	(15.4%)	(7.7%)	(38.5%)	(57.7%)	(3.8%)
	26	12	7	9	0	21	7	5	9	16	1
馬尿酸	(92.9%)	(48.0%)	(28.0%	(36.0%)	(0.0%)	(80.8%)	(26.9%)	(19.2%)	(34.6%)	(61.5%)	(4.0%)
2.5-ヘキサン	12	3	6	5	0	12	0	0	5	7	0
ジオン	(42.9%)	(25.0%)	(50.0%	(41.7%)	(0.0%)	(100.0%)	(0.0%)	(0.0%)	(41.7%)	(58.3%)	(0.0%)
総三塩化	8	2	5	3	0	7	1	1	2	6	0
物	(28.6%)	(25.0%)	(62.5%	(37.5%)	(0.0%)	(87.5%)	(12.5%)	(12.5%)	(25.0%)	(75.0%)	(0.0%)
トリクロ	7	1	5	3	0	6	1	1	1	6	0
口酢酸	(25.0%)	(14 3%)	(71.4%)	(42.9%)	(00%)	(85.7%)	(14 3%)	(14 3%)	(14 3%)	(85.7%)	(0.0%)
マンデル	26	12	7	9	0	21	7	5	9	16	1
酸		(48.0%)	(28.0%	(36.0%)	(0.0%)	(80.8%)	(26.9%)	(19.2%)	(34.6%)		(40%)
N-メチルホ	10	3	4	5	0.070	10	0	0	4	6	0
ルムアミド	- "	(00%)	(0.0%	(0.0%)	(00%)	(100.0%)	(00%)	(00%)	(40.0%)	(60.0%)	(00%)
マンテル酸	16	7	6	5	0.070	13	5	4	3	12	1
+フェニル グリオキシ		,	_	(35.7%)	· ·	1.5	2	(25 0%)	2		(40%)
ル酸	1	0	0	1	0.070	1	0	0	1	0	0
オルト トルイジン	(3.6%)	U		(100.0%)	· ·	(100.0%)	(0 0%)	0	(100.0%)	Ü	(0 0%)
3,3-ジクロロ	2.070	(0.070)	0.078	1	0.078)	1	0.070	0.078	1	0.076)	0.076
4,4・ジアミノジ フェニル	7 19/	(0.00/)	V	(50.0%)	· ·	(50.09/)	(0 00/)	·	(50.0%)	v	V
メタンメチルイソ	7.170	1	3	30.076	0.0%	7	0.076	0.0%	4	3	0.076
ブチルケト	'	1 (14.20/)			· ·	, , l	v	٠	•	2	
		(14.5%)	42.9%	(42.9%)	0.0%)	2	2	(0.0%)	2	(42.9% <u>)</u> 2	-
アンチモ	4	1	1	_	0		_	1	-	_	0
	-			(66.7%)		(8.0%)		(4.0%)	(8.0%)		(0.0%)
インジウ	7	2	3	3	0	1/	0	1	4	2	1
Δ		, ,		(50.0%)				(14.3%)		,	
カドミウ	7	3	3	3	0	5	2	1	3	4	0
<i>A</i>	(25.0%)	(42.9%)	(10.3%	(10.3%)	(0.0%)	(71.4%)	(28.6%)	(14.3%)	(42.9%)	(57.1%)	(0.0%)

*A参加施設のみ対象で複数回答あり

^{*}割合はそれぞれ測定物質を測定している施設数

4-5 外部精度管理調査への参加

全衛連精度管理調査に参加した施設が全衛連以外の外部精度管理調査にも参加しているか、精度管理調査を主催している主な6団体についてその参加状況を調査した。集計結果を表VI-11に示す。複数回答ありで集計した。

表VI-11 外部精度管理調查参加状況

		19/13 TT >> /4 L //					
				主催団体			
参加方法	日本医師会	日本臨床 検査技師 会	日本衛生 検査所協 会	日本総合 健診医学 会	都道府県 市	CAP	その他
A	13	13	9	7	14	8	4
28 施設	(4.4%)	(4.4%)	(3.0%)	(2.4%)	(4.7%)	(2.7%)	(1.2%)
В	105	92	18	90	72	4	25
266 施設	(35.5%)	(31.1%)	(6.1%)	(30.4%)	(24.3%)	(1.4%)	(8.4%)
AB 不明	1	1	0	1	0	0	0
2 施設	(0.3%)	(0.3%)	(0.4%)	(0.3%)	(0.4%)	(0.0%)	(0.0%)

5. 検査委託先との契約状況 (AB 参加施設対象)

検査委託先との契約状況と委託先の精度管理の状況を把握しているか調査した。

5-1 委託先との契約、管理体制把握

表VI-12-1 から表VI-12-4 に集計結果を示す。

表VI-12-1 検査所要日数

参加方法	所要日数							
参加万 伍	7日以内	7~10 日	10 日以上	その他	未回答			
A	17	5	3	3	3			
28 施設	(5.7%)	(1.7%)	(1.0%)	(1.0%)	(1.0%)			
В	200	43	4	32	0			
266 施設	(67.6%)	(14.5%)	(1.4%)	(10.8%)	(0.0%)			
AB 不明	2	0	0	1	0			
2 施設	(0.7%)	(0.0%)	(0.0%)	(0.3%)	(0.0%)			

表VI-12-2 個人情報管理確認事項

参加方法	認証•認定							
多加力 1ム	P マーク	JISQ 15001	ISO 27001	その他	未回答			
A	20	0	10	1	5			
28 施設	(6.8%)	(0.0%)	(3.4%)	(0.3%)	(1.7%)			
В	238	23	82	16	7			
266 施設	(80.4%)	(7.8%)	(27.7%)	(5.4%)	(2.4%)			
AB 不明	2	0	1	0	0			
2 施設	(0.7%)	(0.0%)	(0.3%)	(0.0%)	(0.0%)			

表VI-12-3 品質管理確認事項

参加方法	認証•認定							
多加力拉	ISO 9001	ISO 15189	CAP	その他	未回答			
A	7	17	7	3	7			
28 施設	(2.4%)	(5.7%)	(2.4%)	(1.0%)	(2.4%)			
В	94	180	108	18	14			
266 施設	(31.8%)	(60.8%)	(36.5%)	(6.1%)	(4.7%)			
AB 不明	0	2	1	0	0			
2 施設	(0.0%)	(0.7%)	(0.3%)	(0.0%)	(0.4%)			

表VI-12-4 情報入手方法

参加方法	入手方法							
参加力伝	ホームページ	パンフレット	対面	その他	未回答			
A	13	14	7	0	3			
28 施設	(4.4%)	(4.7%)	(2.4%)	(0.0%)	(1.0%)			
В	141	132	111	14	1			
266 施設	(47.6%)	(44.6%)	(37.5%)	(4.7%)	(0.3%)			
AB 不明	1	0	0	1	0			
2 施設	(0.3%)	(0.1%)	(0.0%)	(0.3%)	(0.0%)			

5-2 委託先の精度管理確認

検査委託先登録衛生検査所の精度を確保するための取り組みの状況を把握しているか調査した結果を表VI-13-1と表VI-13-2に示す。

表VI-13-1 委託先の諸情報の確認

X 12 10 1 X 10/0 - HI II IV - PEPO							
	回答施設数						
参加力伍 	有	無	未回答				
A	23	2	3				
28 施設	(7.8%)	(0.7%)	(1.0%)				
В	232	30	4				
266 施設	(78.4%)	(10.1%)	(1.4%)				
AB 不明	1	1	0				
2 施設	(0.3%)	(0.3%)	(0.0%)				

表VI-13-2 対応状況の確認

参加方法	回答施設数				
参加万伝	有	無	未回答		
A	24	1	3		
28 施設	(8.1%)	(0.3%)	(1.0%)		
В	221	39	6		
266 施設	(74.7%)	(13.2%)	(2.0%)		
AB 不明	1	1	0		
2 施設	(0.3%)	(0.3%)	(0.0%)		

5-3 委託先の精度の監視の実施

検体検査を委託している衛生検査所の精度管理状況の監視方法について調査した結果を表VI-14-1 から表VI-14-3 に示す。

表VI-14-1 委託先の制度の監視実施の有無

参加方法	回答施設数					
参加万伝	している	していない	未回答			
A	14	11	3			
28 施設	(4.7%)	(3.7%)	(1.0%)			
В	162	102	2			
266 施設	(54.7%)	(34.5%)	(0.7%)			
AB 不明	2	0	0			
2 施設	(0.7%)	(0.0%)	(0.0%)			

表VI-14-2 監視実施方法

	方法						
参加方法	同一検体 ブラインド挿入	既知試料 ブラインド挿入	その他	未回答			
A	9	5	2	14			
28 施設	(3.0%)	(1.7%)	(0.7%)	(4.7%)			
В	138	14	21	103			
266 施設	(46.6%)	(4.7%)	(7.1%)	(34.8%)			
AB 不明	1	0	1	0			
2 施設	(0.3%)	(0.0%)	(0.3)	(0.0%)			

表VI-14-3 監視実施頻度

参加方法			頻度		
多/JH/J/14	月1回	半年1回	年1回	その他	未回答
A	3	2	9	0	14
28 施設	(1.0%)	(0.7%)	(3.0%)	(0.0%)	(4.7%)
В	27	28	95	14	102
266 施設	(9.1%)	(9.5%)	(32.1%)	(4.7%)	(34.5%)
AB 不明	1	1	0	0	0
2 施設	(0.3%)	(0.3%)	(0.0%)	(0.0%)	(0.0%)

Ⅷ.総評

はじめに

全国労働衛生団体連合会(全衛連)令和6年度労働衛生検査精度管理調査(生物学的モニタリング検査精度管理調査)にご参加いただいた施設に心より敬意を表する。参加機関におかれては、日ごろから健康診断業務の精度向上に努められており、本精度管理調査がそのお役に立てれば幸いである。

令和6年度(第38回)労働衛生検査精度管理調査の結果について以下に総評する。

1. 参加施設

令和6年度の参加申し込み施設数は、昨年度より1施設減って322施設であった。なお、昨年度と同様に1施設は参加項目が2項目のみと少なく総合評価は行わなかったため、評価を行った施設は321であった。

A・B参加施設の内訳は、A参加施設が 29 施設(1 施設減)で B 参加施設数が 293 施設であった。なお、調査項目によっては回答未提出の施設があり、調査項目により参加施設数に若干の差異がある。これは、A・B参加施設で測定の需要がない項目については、外部精度管理の必要がないとの判断で当該項目のみ回答がなかったものと推測している。

2. 評価結果

今回の調査では321施設すべてがA評価であった。

2-1 A参加施設について

調査項目によっては評価点が 85 点に満たない項目がある施設があった。これらの施設ではその原因を徹底的に究明し、日常業務における精度向上に一層の努力をお願いする。今回もこれらの施設には本文「VI. 考察と指導コメント」で述べてり、当該施設は今後の参考にされたい。

2-2 B 参加施設について

本調査では、B参加施設は委託先施設の成績がその施設の成績となる。B参加施設においては、委託先施設の測定結果をそのまま受け入れるため、委託先施設に対する精度管理の監視が求められる。

2-3 受託施設について

本調査では、A 参加施設の内の 16 施設が B 参加施設から測定の受託を受けていた。 受託施設ではその使命上、すべての項目で 90 点以上の評価点を得ることが望ましい。 今回の調査で 85 点未満の項目があった受託施設は一層の研鑽を期待する。

3. 評価の意味と成績の公表

全衛連では、精度管理調査の測定結果の評価を行うについて労働衛生検査専門委員会 が定めた評価方法を用いて点数化を行っている。 点数評価の性質上、同じ A 評価でも 1 点の差で優劣がつくことになる。しかしながら、全衛連の検体検査の精度管理調査においては、1 点の差で評価に優劣をつけることは意味がない。そのため、外部に本調査の成績公表を行うに際しては、参加全項目の平均による総合評価を A[優] (85 点以上)、B [良] (70 点以上 85 点未満)、C [可] (60 点以上 70 点未満)、D [不可] (60 点未満) の 4 段階の成績としている。

施設の評価結果の公表は、参加施設および関連機関への「本報告書」および精度管理 全般についての「全衛連総合精度管理調査結果の概要」の送付、さらには全衛連のホームページへの掲載により行っている。

4. 検体の採取時期について

生物学的モニタリングにおける検体採取時期について、検査項目によっては採取時期 が勧告されているものがある。

有機溶剤の体内半減期は比較的短いので、有機溶剤の尿中代謝物濃度がほぼ最高となる時期に採取する必要がある。しかし、「VI.集計結果 調査票(その3) 2-2.特殊健康診断の代謝物等の採取時期」を見ると、有機溶剤の尿中代謝物測定のための尿採取時期が「作業開始前」や「随時」との回答が一定の割合であった。巡回健診においては、事前に作業者の作業状況を事業所と良く打ち合わせを行い、健診日と検体採取日を分ける事も必要である。また、施設健診においては、健診受診予約を週の後半にする等可能な限り配慮しなくてはいけない。

一方、採取時期に制約のない鉛検査の血液採取時期では、「終了時」あるいは「連続 作業終了時」と回答した施設が一割弱あった。

5. フェニルグリオキシル酸試料によるプロセス調査

今回も参考調査として尿中フェニルグリオキシル酸(PGA)の試料を参加全施設に対して送付し、試料の保管、委託先との授受、測定(分析)、結果報告までの一連のプロセスを報告していただいた。調査の結果については「V.フェニルグリオキシル酸に係るプロセス調査結果で述べており、プロセスの改善に今後とも努めていただきたい。

最後に

今回の全衛連労働衛生検査精度管理調査への参加に改めて感謝するとともに、参加施設が今回の調査結果を基に益々の精度向上につなげていただくことを望む。今後も本調査に継続的に参加され、益々の精度向上に努められることを期待する。

参加施設一覧

参加施設一覧

参加施設一覧	⊆ 1
都道府県	施設名
北海道	(公財)北海道労働保健管理協会
	(公財)北海道結核予防会 札幌複十字総合健診センター
	(公財)パブリックヘルスリサーチセンター附属健康増進センター札幌商工診
	(医・社)慶友会吉田病院
	(一社)日本健康倶楽部 北海道支部
	(医)新産健会 スマイル健康クリニック
	(医・社)明日佳 札幌健診センター
	(一財)ハスカッププラザ 苫小牧市保健センター
青森県	(一財)全日本労働福祉協会 青森県支部
	(公財)八戸市総合健診センター
	(公財)シルバーリハビリテーション協会八戸西健診プラザ
岩手県	(公財)岩手県予防医学協会
	(社医)啓愛会 健診センター
宮城県	(一財)杜の都産業保健会仙台健診センター
	(一財)宮城県予防医学協会
	(公財)宮城厚生協会
	(一財)宮城県成人病予防協会 附属仙台循環器病センター
	(一財)宮城県成人病予防協会中央診療所
	(医・社)進興会 せんだい総合健診クリニック
	(一財)杜の都産業保健会 一番町健診クリニック
	(医)仁泉会 みやぎ健診プラザ
山形県	(四財)全日本労働福祉協会 東北支部
шлж	(一財)日本健康管理協会 山形健康管理センター
福島県	(公財)福島県労働保健センター
旧西木	(医)創仁会 東日本診療所
茨城県	(公財)日立メディカルセンター
次 频末	(一財)全日本労働福祉協会 茨城県支部
	(一財)茨城県メディカルセンター
	(公財)茨城県総合健診協会
	(株)江東微生物研究所 中央研究所つくば
	(公社)取手市医師会 取手北相馬保健医療センター医師会病院
	(一社)日本健康倶楽部茨城支部
栃木県	(公財)栃木県保健衛生事業団
1/	(医)北斗会 宇都宮東病院
	(医•社)福田会 福田記念病院
	(公財)宇都宮市医療保険事業団健診センター
	(社医)中山会宇都宮記念病院総合健診センター
	(医)宇都宮健康クリニック
	(特非)ルネサンス巡回健診クリニック
	さくら診療所
	(医社)亮仁会 那須中央病院総合健診センター
群馬県	(一財)日本健康管理協会 伊勢崎健診プラザ
4 エ かり カト	(一財)全日本労働福祉協会群馬県支部
	(一社)伊勢崎佐波医師会病院 成人病検診センター
埼玉県	(公財)埼玉県健康づくり事業団
为上六	(医社)愛友会 上尾中央総合病院
	(医社)東光会 戸田中央総合健康管理センター
	(株)ビー・エム・エル BML総合研究所
	(社医)刀仁会 坂戸中央病院
	(株)保健科学 東日本総合ラボラトリー
	(医)クレモナ会 ティーエムクリニック
	((三社)日本健康倶楽部浦和支部
	(医)天尽会 敬愛クリニック
 千葉県	((医)人(会) 敬愛ソリーソン (一財) 君津健康センター
本本	(公財)ちば県民保健予防財団

千葉県	(医・社)福生会斎藤労災病院
	(株)サンリツ
	(医・社)廣生会 関東予防医学診療所
	(一財)柏戸記念財団
	(医・社)青山会 船橋みなとクリニック
	(医)徳洲会 野田総合病院 健診センター
	(一社)日本健康倶楽部千葉支部
	(一位)口外健康误采的工朱文的
	(一社)千葉衛生福祉協会 千葉診療所
	(社福)聖隷福祉事業団 聖隷佐倉市民病院 健診センター
	(医・社)報徳会 報徳千葉診療所
東京都	(一財)全日本労働福祉協会
木 木 印	(別)生日本万割田世勝云
	(一財)健康医学協会 東都クリニック
	(公財)東京都予防医学協会
	(一財)日本予防医学協会 東日本事業本部
	(一社)労働保健協会
	(一財)産業保健協会
	(一財)日本健診財団
	(医・社)新町クリニック健康管理センター
	(医・社)日健会 日健クリニック
	(医財)福音医療会 神田キリスト教診療所
	(医・社) 同友会
	(株)エスアールエル セントラルラボラトリー
	(株)LSIメディエンス中央総合ラボラトリー
	中央労働災害防止協会 労働衛生調査分析センター
	(公財)愛世会愛誠病院
	(医・社)俊秀会 エヌ・ケイ・クリニック
	(医・社)松英会 馬込中央診療所
	(医財)立川中央病院附属健康クリニック
	(医・社)潮友会うしお病院
	(医・社)七星会 カスガメディカルクリニック
	(公財)河野臨牀医学北品川クリニック・予防医学センター
	(一財)産業保健研究財団
	(医・社) 朋翔会 弥生ファーストクリニック
	(一財)日本健康増進財団
	(医・社)幸楽会 幸楽メディカルクリニック
	(一財)近藤記念医学財団富坂診療所
	(一財)日本健康管理協会 新宿健診プラザ
	(医・社) こころとからだの元氣プラザ
	(医・社) 康生会 シーエスケー・クリニック
	(医財)南葛勤医協 芝健診センター
	(一財)東京保健会 病体生理研究所
	(公財)パブリックヘルスリサーチセンター パブリック診療所
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(株) 昭和メディカルサイエンス
	(医)財団 三友会 深川ギャザリアクリニック
	(医)財団京映会
	(一財)日本がん知識普及協会
	(医・社)多摩医療会 原町田診療所
	(医・社)友好会目黒メディカルクリニック
	(医財)東友会
	(医財)綜友会
	(一財) 健康医学協会 霞が関ビル診療所
	(医社)明芳会IMS Me-Life クリニック板橋
	JR東日本健康推進センター
	(医財)綜友会 第二臨海クリニック
	(医・社)せいおう会 鶯谷健診センター
	(公財)パブリックヘルスリサーチセンター リバーサイド読売ビル診療所
	(医・社)生光会新宿追分クリニック

東京都	(医・社)生光会 新宿追分クリニック板橋分院
	(医・社)友好会 秋葉原メディカルクリニック
	(医・社)進興会 セラヴィ新橋クリニック
	(一社)オリエンタル労働衛生協会 東京支部 オリエンタル上野健診セン
	(医·社)進興会 立川北口健診館
	(一財)近畿健康管理センターKKCウェルネス東京日本橋健診クリニック
	(一財)全日本労働福祉協会 九段クリニック
	いすゞ自動車(株)いすゞ病院
11.7	(医・社)友好会 秋葉原メディカルクリニックアネックス
神奈川県	(公財)神奈川県予防医学協会
	(一財)神奈川県労働衛生福祉協会
	(一財)ヘルス・サイエンス・センター
	(医·社)相和会
	(一財)京浜保健衛生協会
	(医)興生会 相模台健診クリニック
	(公財)神奈川県結核予防会
	(株)保健科学研究所 (社医)財団 石心会 川崎健診クリニック
	(医・社)成澤会 清水橋クリニック
	(一社)日本健康倶楽部 横浜支部
	(医・社)日本厚生団 長津田健診・透析クリニック
	(医・社)優和会 湘南健診クリニック 湘南健康管理センター
	(公財)神奈川県予防医学協会集団検診センター
	(医・社)優和会湘南健診クリニックココットさくら館
新潟県	(一社)新潟県労働衛生医学協会
17173714	(一社)新潟縣健康管理協会
	(公財)新潟県保健衛生センター
	(一社)上越医師会 上越地域総合健康管理センター
	(一財)新潟県けんこう財団 新潟健診プラザ
	(一財)新潟県けんこう財団 長岡健康管理センター
	(一社)新潟県労働衛生医学協会付属アクアーレ長岡健康増進センター
	(一社)新潟県労働衛生医学協会佐渡検診センター
富山県	(一財)北陸予防医学協会
	(公財)友愛健康医学センター
	(一社)日本健康倶楽部 北陸支部
	(公財)富山県健康づくり財団 富山県健康増進センター
	(医・社)若葉会高重記念クリニック
石川県	(一財)石川県予防医学協会
与 4 目	(医・社)洋和会 未病医学センター
福井県	(公財)福井県予防医学協会
	(公財)福井県労働衛生センター (一社)長野県労働基準協会連合会 松本健診所
長野県	(一社)技事宗为衡基华協去建立去。松本健設別 (一財)全日本労働労働福祉協会長野県支部
	(公財)長野県健康づくり事業団
	(一財)中部公衆医学研究所
岐阜県	(一財)ききょうの丘健診プラザ
	(一社)ぎふ綜合健診センター
	(一財) 岐阜健康管理センター
	(株)メディック 岐阜ラボ
	(一財)総合保健センター
	(医)岐陽会 サンライズクリニック
静岡県	(一財)東海検診センター
	(社福)聖隷福祉事業団 聖隷健康診断センター
	(公財)静岡県予防医学協会
	(公財)静岡県産業労働福祉協会
	(一財) 芙蓉協会 聖隷沼津第1クリニック 聖隷沼津健康診断センター
	(一社)静岡市静岡医師会健診センター

静岡県 (社福)聖隷福祉事業団 聖隷予防検診センター	
(医・社)駿栄会 御殿場石川病院	
(社福)聖隷福祉事業団 聖隷健康サポートセンターShizuoka	
(医)豊岡会 浜松とよおか病院	
(公財)静岡県予防医学協会 浜松健診センター	
愛知県 (一社)瀬戸健康管理センター	
(一財)公衆保健協会	
(一財)愛知健康増進財団	
(一財)全日本労働福祉協会 東海支部	
(医)豊昌会豊田健康管理クリニック	
(一財)名古屋公衆医学研究所	
(一社)オリエンタル労働衛生協会	
(医社)卓和会しらゆりクリニック	
(社医)宏潤会 だいどうクリニック 健診センター	
(医)東海予防医学クリニック	
(医)光生会 光生会病院	
(一社)半田市医師会健康管理センター	
(医)あいち健康クリニック	
(公財)豊田地域医療センター	
(医)豊岡会 豊橋元町病院 健康管理センター	
(株)エスアールエル愛知ラボラトリー	
(医)名翔会 名古屋セントラルクリニック	
(公財)愛知県健康づくり振興事業団	
(医)松柏会 国際セントラルクリニック	
(医)九愛会 中京サテライトクリニック	
(株)デンソー健康推進部	
(医)名翔会 和合セントラルクリニック	
三河安城クリニック (一財)全日本労働福祉協会 東海診療所	
(一財) 王日本方衡恒恒協会 東海診療所 (一財) 日本予防医学協会名古屋支店ウェルビーイング栄	
(一財)近畿健康管理センター 名古屋事業部	
(医)松柏会 大名古屋ビルセントラルクリニック	
(医)松伯会 スコロ屋にかじつドブルブリーラブ (一社)ライフ予防医学センター ライフ予防医学クリニック	
(社医)宏潤会 DAIDO MEDICAL SQUARE	
三重県 (一財)三重県産業衛生協会	
一里ボー (一財)近畿健康管理センター 三重事業部	
滋賀県 (一財)滋賀保健研究センター	
(株)メディック滋賀	
(一社)近畿健康管理センター 滋賀事業部	
(株)近畿エコサイエンス	
京都府 (一財)京都工場保健会	
(一財)大和松寿会中央診療所	
(一財)京都労働災害被災者援護財団 京都城南診療所	
(株)GSユアサ環境科学研究所	
(一財)京都予防医学センター	
ファルコバイオシステムズ 総合研究所	
洛和会音羽病院京都健診センター	
(一財)京都工場保健会宇治支所	
(一社)京都微生物研究所 付属診療所	
大阪府 (公社)大阪労働基準連合会 関西労働衛生技術センター	
(医)崇孝会北摂クリニック	
(一財)日本予防医学協会西日本事業本部	
パナソニック健康保険組合 産業衛生科学センター	
大阪健康倶楽部 小谷診療所	
(社医)寿楽会 m·oクリニック	
(医)いながきレディースクリニック	
(株)大阪血清微生物研究所	

大阪府	中央労働災害防止協会 大阪労働衛生総合センター
	中央カ側及告防止協会 人限カ側衛生総合センター (医)緑地会 赤尾クリニック
	(体)メディック メディック堺
	(株)メディック メディック・ <u>外</u> (医)恵生会
	(医)思生芸 (公財)大阪労働衛生センター第一病院
	(公財)人阪労働衛生センダー第一病院 (公財)パブリックヘルスリサーチセンター 関西健診グループ
	(公別)ハブリックヘルスリザーチセンター 関四健診グループ (医)健人会那須クリニック
	(医)厚生会 厚生会クリニック
	(医)渡辺医学会 桜橋渡辺リハビリテーション病院
	(医)愛仁会 愛仁会総合健康センター
	(医)一翠会 一翠会千里中央健診センター
	(一社)オリエンタル労働衛生協会大阪支部 オリエンタル大阪健診センター
	(一財)近畿健康管理センター大阪事業部
兵庫県	(一財)順天厚生事業団
	(公財)兵庫県予防医学協会
	(一社)姫路市医師会
	川西市医師会メディカルセンター
	(医・社)泰志会 島田クリニック
	(一社)西宮市医師会
	(医・社)尚仁会 平島病院
	(社医)神鋼記念会神鋼記念病院総合健康管理センター
	(公財)兵庫県健康財団
	(公財)加古川総合保健センター
	(一社)日本健康倶楽部兵庫支部診療所
	(医-社)河合医院
	(一社)神戸市医師会 医療センター診療所
	(一社)日本健康倶楽部和田山診療所
奈良県	(一財)奈良県健康づくり財団
	(一社)葛城メディカルセンター
和歌山県	(社医)黎明会 健診センター・キタデ
I HEXTEN	(一財)NSメディカル・ヘルスケアサービス
	(医)南労会 紀和病院
	(公財)中国労働衛生協会 鳥取検診所
い コンンド	(公財)中国労働衛生協会 米子検診所
	(公財)鳥取県保健事業団
島根県	(公財)島根県環境保健公社
岡山県	(一社)淳風会 淳風会健康管理センター
岡山木	(一社) 浮風云 浮風云健康管理センター (一社) 岡山県労働基準協会労働衛生センター
	(公財)中国労働衛生協会津山検診所
	(一財)倉敷成人病センター 倉敷成人病健診センター
<u> </u>	大ケ池診療所
広島県	(一財)広島県集団検診協会
	(公財)中国労働衛生協会
	(公財)中国労働衛生協会尾道検診所
	(一財)広島県環境保健協会
	(公財)広島県地域保健医療推進機構
	(社医)里仁会 興生総合病院
	(医)健康倶楽部健康倶楽部健診クリニック
	(医・社)仁恵会 福山検診所
	(株)福山臨床検査センター
山口県	(公財)山口県予防保健協会
	(一社)日本健康倶楽部山口支部
徳島県	(一社)徳島県労働基準協会連合会
香川県	(一社)香川労働基準協会
	(一社)瀬戸健康管理研究所
愛媛県	(一社)今治市医師会 今治市医師会検査センター
	(医) 菅井内科

愛媛県	(医)順風会健診センター内 (株)LSIメディエンス
	(一社)エヒメ健診協会
高知県	(公財)高知県総合保健協会
	(医)健会 高知検診クリニック
福岡県	(一財)西日本産業衛生会 北九州産業衛生診療所
	(一財)西日本産業衛生会北九州健診診療所
	(公財)ふくおか公衆衛生推進機構ガーデンシティ健診プラザ
	(公財)福岡労働衛生研究所
	(一財)日本予防医学協会附属診療所ウェルビーイング博多
	(一社)北九州市小倉医師会 小倉医師会健診センター
	(一社)九州健康総合センター
	(医)心愛
	(一財)医療情報健康財団
	(一社)日本健康倶楽部 福岡支部
	(公財)パブリックヘルスリサーチセンター西日本健診グループ
	(株)シー・アール・シー総合研究所
	(一社)日本健康倶楽部北九州支部診療所
	(医・社)生光会 ヘルスポートクリニック
	(公財)ふくおか公衆衛生推進機構 久留米総合健診センター
佐賀県	(一財)佐賀県産業医学協会
長崎県	(公財)長崎県健康事業団
	(医)西九州健康診断本部診療所
/sh	(医)祥仁会西諫早病院
熊本県	(公財)熊本県総合保健センター
	日本赤十字社熊本健康管理センター
	(医)室原会 菊南病院
	(社・福)恩賜財団済生会熊本病院 予防医療センター
大分県	(一財)西日本産業衛生会 大分労働衛生管理センター
宮崎県	(公財)宮崎県健康づくり協会
鹿児島県	(公社)鹿児島県労働基準協会
油细 坦	(公財)鹿児島県民総合保健センター
沖縄県	(一財)沖縄県健康づくり財団
	(一社)日本健康倶楽部沖縄支部
	(一財)琉球生命済生会 琉生病院 (一社)那覇市医師会 生活習慣病検診センター
M 如 发 tn t級 甲	(一位) 新朝市医師会 生活省慎病検診センダー (株) 日本医学臨床検査研究所
71部多川俄渕	
	(株)中央微生物検査所
	(株)京浜予防医学研究所
L	二プロ(株) 総合研究所

調査前送付文書

- 令和6年度労働衛生検査精度管理調査実施要領
- 労働衛生検査精度管理調査 精度管理調査試料送付と測定に関する注意事項
- ・ 調査票記入要領と提出について
- ・ 労働衛生検査精度管理調査 調査票 (その1)
- 尿中フェニルグリオキシル酸測定に関する調査票(I)
- 尿中フェニルグリオキシル酸受託測定に関する調査票(Ⅱ)
- ・ 労働衛生検査精度管理プロセス調査調査票(調査票その3)
- ・ 測定方法コード表
- 令和6年度精度管理調査外部施設一覧

令和6年度(第38回)労働衛生検査精度管理調査実施要領

日所

本調査は、各施設が実施する鉛業務、有機溶剤業務及び特定化学物質取扱業務従事者の特殊健康診断に係る代謝物等の測定精度を確認するとともに、必要な指導を行うことにより、信頼性の高い健康診断施設及び登録衛生検査所等を育成することを目的とする。

2 対象施設

鉛・有機溶剤・特定化学物質に係る特殊健康診断を実施する健康診断施設及び衛生 検査所等。なお、参加申込の際は下記に示す【A参加施設】または【B参加施設】の いずれかを選択する。

【A 参加施設】: 全ての調査項目または調査項目の一部を自施設で測定している施設

【B参加施設】:調査項目の全てについて他の検査機関に測定を委託している施設

3 調査項目

- (1) クロスチェック (9項目)
- 1. 血中鉛 2. 尿中デルタアミノレブリン酸 3. 尿中馬尿酸 4. 尿中メチル馬尿酸
 - 5. 尿中マンデル酸 6. 尿中総三塩化物 7. 尿中トリクロロ酢酸
- 8. 尿中2,5へキサンジオン 9. 尿中Nメチルホルムアミド

(2) 測定プロセスに関する調査

測定プロセスを調査票とフェニルグリオキシル酸試料を用いて調査する。

4 実施方法

クロスチェック調査試料及びプロセス調査の試料と付帯調査票を参加施設に送付し、測定結果を回収して測定値の精度を評価するとともに、調査票では測定から結果機告までのプロセスの調査をする。

【A参加施設】には、下記(1)、(2)の①~⑪未での試料と調査票を送付する。 【B参加施設】には、下記(2)の⑦~⑪の試料と調査票を送付する。

(1) クロスチェック項目及び送付試料数

	血中鉛量測定用田子によって、ブラン・デーを受ける	() () () () () () () () () ()
Ķ		_
腾	尿中馬尿酸・メチル馬尿酸・マンデル酸量測定用 (混合試料)	6 財準
厎	尿中総三塩化物量・トリクロロ酢酸量測定用 (混合試料)	6 試料
录	尿中 2,5-ヘキサンジオン量測定用	6 試料
紧	尿中 N-メチルホルムアミド量測定用	6 戰準

(2) 測定プロセスに関する調査

- 労働衛生検査精度管理プロセス調査票
- (8) プロセス調査用

尿中フェニルグリオキシル酸 (PGA) 量測定用試料

2 試料

- 尿中フェニルグリオキシル酸(PGA)測定に関する調査票 (1) 尿中フェニルグリオキシル酸(PGA)受託測定に関する調査票 (Π)
- ① 牛血を使用

実施時期 (日程)

6 測定結果の報告

[A 参加施設]

測定結果の報告は、全衛連から送付する本調查9項目の各項目6濃度の試料と、測定プロセス調査用試料2濃度の測定結果を、所定の回答票「調査票(その1)」と「尿中フェニルグリオキシル酸の測定に関する調査票(1)」・「尿中フェニルグリオキシル酸の受託測定に関する調査票(1)」・「尿中フェニルグリオキシル酸の受託測定に関する調査票(II)に記入し、原本を提出するものとする。ただし、全衛連から送付される試料で自施設では測定していない項目がある場合には、当該試料を通常測定を委託している登録衛生検査所等に送り、測定結果を確認

(B 参加施設]

し、その結果を報告するものとする。

測定までのプロセス調査用として<u>尿中フェニルグリオキシル酸量測定用人工尿試料 2 試料のみを送付する</u>ので、当該試料を通常測定を委託している衛生検査所に移送して測定を行い、その測定結果を「尿中フェニルグリオキシル酸の測定に関する調査票 (I)」 および「尿中フェニルグリオキシル酸の受託測定に関する調査票 (I)」 に記入し、その原本を提出するものとする。 なお、プロセス調査以外の調査項目物質の測定結果については、通常測定を委託している衛生検査所が、全和6年度全衛連労働衛生検査構度管理調査へ参加しており、 ている衛生検査所が、会和6年度全衛連労働衛生検査構度管理調査へ参加しており、当該施設へ試料が送られていることを確認し、当該施設へ送付された構度管理調査試料の測定結果を所定の回答票「調査票 (その1)」に記入し、その原本を提出するものとする。

[A·B参加施設共通]

原則として調査対象9項目全での測定結果を「調査票 (その1)」に記入して原本 <u>を提出すること。「調査票 (その1)」に測定結果が記入されていない項目については</u> 当該項目を調査不参加項目とし、評価を行わない。

7 付帯調査票による内部精度管理の状況報告

健康診断施設が精度の確保のために行っている内部精度管理および、健康診断施設 が登録衛生検査所等に対して行っている精度管理の実施内容について「労働衛生検査 精度管理プロセス調査票」により、報告するものとする。

10年

評価は、全衛連労働衛生検査専門委員会が、下記(1)~(3)の評価方法に基づき行う。

(1) 測定値の評価

送付する9項目各款料について各施設が測定した測定値が、全参加施設の各款料測定値から所定の手順で導き出した基準となる款料濃度から、評容される範囲内に納まっているか評価する。

(2) 解析値による評価

各施設の測定結果について下記5種類の解析値評価を行う。

(3) 測定プロセスの評価

送付する、プロセス調査用尿中フェニルグリオキシル酸試料の取り扱い状況について「尿中フェニルグリオキシル酸の測定に関する調査票 (1)・(11)」から、測定に係わるプロセスについて評価する。

9 評価結果の公表

評価結果については、評価方法(1)と(2)の結果を点数化し、その点数値囲によりA [優]、B [良]、C [可]、D [不可]の4段階に評価した結果を、全衛連構度管理調査参加施設に配付する冊子「全衛連総合精度管理調査結果の概要」および全衛連のホームページに公表する。

10 参加申込方法

全衛連 HP の「精度管理調査参加申込」から「労働衛生検査 A もしくは B」を選択し、申込フォーム の必要事項を記入してお申し込み下さい。参加申込みを受け付けましたら、請求書を添けしたメールを自動配信します。

11 参加申込期限 令和6年9月20日(金)

12 参加費用 (税込)

[A参加施設] 全衛連会員:49,500円 (消費稅10% 4,500円 本体 45,000円)

会員以外:74,800円(消費税10% 6,800円 本体 68,000円)

【B 参加施設】全衛連会員:16,500 円 (消費税10% 1,500 円 本体 15,000 円)

会員以外:41,800円(消費稅10% 3,800円 本体 38,000円)

なお、振込手数料は各自ご負担願います。

*令和6年度以降の精度管理調査における人工尿について

令和5年度の人工保はJIS 規格に沿った人工保をしたが、令和6年度からは令和4年度まで使用していた従来の人工保組成に戻すこととした。(依米の人工保全用いた場合、尿中デルタアミノレブリン酸、尿中メチル馬尿酸、尿中馬尿酸、尿中マンデル酸、尿中総三塩化物、尿中トリクロロ耐酸、尿中2.5~キサンジオン、尿中N・メチルホルムアミドは、精度管理調査の期間中安定であることはすでに明らかであることから、2.5~キサンジオンの試料に限らず全ての項目において、従来から使用していた人工尿組改を使用する)

工

労働衛生検査精度管理調査

精度管理調査試料送付と測定に関する注意事項

令和6年度全衛連労働衛生検査精度管理調査は、A参加とB参加の別により参加施設への調査用試料の送付内容と測定結果の報告については異なります。それぞれ下記の要領となりますので、調査用試料の受領並びに測定実施のご準備をお願いします。

1. 参加施設への送付試料について

【A参加施設】

自施設で測定を実施しているA参加施設(一部調査項目の測定を外部施設に委託している施設も含む)にはすべての精度管理調査試料を送付し、施設の労働衛生検査の精度と検査結果報告までの精度管理体制の調査をします。

[B参加施設]

すべての調査項目について外部の測定施設に測定を委託しているB参加施設には、測定プロセスに関する調査用試料のみを送付し、施設の検査結果報告までの精度管理体制の調査をします。

A参加施設、B参加施設いずれの場合も送付する調査票に測定結果を記入し、調査票提出期限の令和6年11月22日(金)までに全衛連事務局宛てに調査票原本を郵送にて提出してください。

2. 調査項目及び送付する調査試料数等

_	(1) クロステェック調査試料			
D	① 血中鉛量測定用 (牛血試料)	9	6 試料	
	② 尿中デルタアミノレブリン酸量測定用	9	6 試料	
(0)	③ 尿中馬尿酸、メチル馬尿酸及びマンデル酸量測定用			
	(混合試料)	9	就称	
4	④ 尿中総三塩化物及びトリクロロ酢酸量測定用			
	(混合試料)	9	6 試料	
Θ)	⑤ 尿中2,5-ヘキサンジオン量測定用	9	6 試料	
9	⑥ 尿中№メチルホルムアミド量測定用	9	6 試料	

(2) 測定プロセスに関する調査試料

① 尿中フェニルグリオキシル酸量測定用

2 就料

3. 混合試料についての注意

[HA・MA]のラベルの試料には、トルエンの代謝物である「馬尿酸」、キシレンの代謝物である「メチル馬尿酸」及びスチレンの代謝物である「マンデル酸」が混合されていますので、これら3物質を測定してください。 なお、メチル馬尿酸として「オルト(0)・メチル馬尿酸」、「メタ(m)・メチル馬尿酸」及び「パラ(p)・メチル馬尿酸」を混合しています。

4. 参加施設への試料送付日程と送付梱包数

(1) 試 料 発 送 日:令和6年10月22日(火) 試料到着予定日:令和6年10月23日(水)~24(木) (2) 梱包の内容 [A参加施設] 梱包1及び梱包2の計2梱包を冷蔵で送付します。 [B参加施設] 梱包2の計1梱包のみを冷蔵で送付します。

5. 梱包の内容 (各梱包は、それぞれ別価に発送します)

梱包2 測定プロセスに関する調査用 (冷蔵) ① 尿中フェニルグリオキシル酸量測定用

2 試料

6. 試料受領後の注意事項と調査試料受領報告書

(1) 試料受領後は、速やかに梱包試料の内容を確認して、検査を開始するまで試料を5~8℃で治療保存してください。

- (2) A参加、B参加施設ともに、配付した試料に不具合があった場合は全衛 連事務局に電話連絡をしてください。 電話番号: 03-5442-5934
- (3) A参加施設は、梱包1と梱包2の試料が到着後、試料状態を確認し速や かに全衛連事務局に受領報告を必ず行ってください。試料受領報告は、 梱包1に同梱されている「調査試料受領報告書」に必要事項を記入し、F AXにて送信をお願いします。(不具合等における再送付対応のためです のでご協力をお願いします)

FAX番号: 03-5442-5937

(5) B参加施設には「調査試料受領報告書」を送付しませんので、受領報告の必要はありません。

7. 測定に関する注意事項

【A参加施設】

- (1) 自施設で測定を行っていない調査項目については、自施設に送付された調査試料を通常測定を委託している登録衛生検査所へ送付し、その測定結果を「調査票(その1)」に記入してください。
- (2) 測定プロセス調査用の尿中フェニルグリオキシル酸試料の<u>測定結果は「尿中フェニルグリオキシル酸測定に関する調査票(I)」に記入してください。</u>

【B参加施設】

- (1) B参加施設にはプロセス調査用として、尿中フェニルグリオキシル酸量 測定試料の2試料のみを送付します。当該試料と「フェニルグリオキシル 酸受託測定に関する調査票(II)」を、通常測定を委託している登録衛 生検査所に送っていただき、当該試料の測定結果については「フェニル グリオキシル酸測定に関する調査票(I)」に記入してください。
- (2) B参加施設にはプロセス調査用の尿中フェニルグリオキシル酸試料以外の試料は送付しません。プロセス調査以外の調査項目の測定結果については、通常測定を委託している登録衛生検査所に、当該衛生検査所に全衛連から送付されている精度管理調査試料に係る測定結果を照会し、その測定結果を「調査票(その1)」に記入してください。

【測定受託する登録衛生検査所】

(1) A参加施設から貴施設に精度管理調査試料の測定依頼があった場合は、必ず依頼元のA参加施設宛に全衛連から送られた試料を測定して、その測

- 定結果を依頼元の施設に報告してください。
- (2) B参加施設から全衛連から送付された尿中フェニルグリオキシル酸試料の測定を依頼された場合は、当該B参加施設に送られた尿中フェニルグリオキシル酸試料を測定し、その測定結果を依頼元の施設に報告してください。またフェニルグリオキシル酸調査票②に測定結果を記載し全衛連に提出して下さい。
- (3) B参加施設から尿中フェニルグリオキシル酸以外の調査項目の測定結果について照会があった場合は、貴施設が自ら本精度管理調査に参加し、全衛連から貴施設宛に送付された試料を測定した結果(全衛連に報告した測定値と同値)を当該施設に回答してください。全衛連の精度管理調査では、試料をランダム配布しているため同じ試料番号でも施設ごとに試料機度が異なりますので注意してください。

調査票記入要領と提出について

全衛連労働衛生検査精度管理調査は、A参加とB参加の別により測定結果の報告について異なります。それぞれ下記の要領にて調査票の記入をお願いします。

【調査票(その1)について】

1. A参加で申し込んだ施設について

今年度自施設で測定を実施している施設(調査項目の一部を外部登録衛生検査所に測定委託している施設を含む)には、すべての調査試料が送付されます。自施設で測定した測定結果を「調査票(その1)」、「尿中フェニルグリオキシル酸測定に関する調査票(I)」に間違いないように記入して、全衛連へ原本を提出してください。

また、一部調査項目の測定を外部施設に委託している場合には、全衛連から送付された当該調査項目に係る精度管理調査試料を、通常測定を委託している登録衛生検査所に送付し、その試料の測定結果を調査票(その1)に記入して全備連に報告してください。その際、報告する測定結果は、必ず自施設に送られた試料の測定結果であることを良く確認してください。

調査票(その1)には<u>原則9項目6試料すべての測定結果を記入</u>してください。 部項目のみの場合は施設評価が行えません。

自施設でフェニルグリオキシル酸を測定している場合は「フェニルグリオキシル酸受託測定に係わる調査票 (II)」の提出は必要ありませんが、測定を委託している場合は、測定を委託している外部登録衛生検査所を経由して全衛連に提出していただくようご手配下さい。

2. B参加で申し込んだ施設について

すべての調査項目を外部の登録衛生検査所に測定委託している施設には、 測定プロセス調査用のフェニルグリオキシル酸量測定用試料2試料のみを送付 します。届いたフェニルグリオキシル酸2試料と、試料送付前に本票と一緒に 配付しています「尿中フェニルグリオキシル酸受託測定に関する調査票 (II)」を添えて、通常測定委託している登録衛生検査所に送付し、その試料の測定結果を 「尿中フェニルグリオキシル酸測定に関する調査票 料の測定結果を に記入して、全衛連に原本を提出してください。

「尿中フェニルグリオキシル酸受託測定に関する調査票(II)」は測定を 委託した登録衛生検査所に全衛連に提出していただくようご手配下さい。

測定プロセス調査のフェニルグリオキシル酸以外の精度管理調査項目については、通常測定を委託している登録衛生検査所等に、令和6年度全衛連労働衛生検査精度管理調査に係る測定結果を照会し、精度管理調査項目すべての測定結果を「調査票(その1)」に記入して、全衛連へ原本を提出してく

がない。

B参加で申し込んだ施設が全衛連に提出する調査票は、「調査票 (その1)」と「尿中フェニルグリオキシル酸測定に関する調査票 (I)」の2種類です。B参加施設へは「調査票 (その2)」は送付いたしませんので、提出の必要はありません。

3. 「調査票 (その1)」の記入について

- (1) 調査票はすべての参加施設に送付されます。試料測定結果を「調査票 (その1)」に、測定値を補正せずにそのまま記入してください。ただ し、尿中総三塩化物 (TTC)量及び尿中トリクロロ酢酸 (TCA)量の記
- ① 吸光光度法を採用して測定した場合

入に当たっては下記の点にご留意ください

- 双元元及びで採用し、例准した参言 TTC、TCAの測定値をそのまま記入してください。
- ② ガスクロマトグラフ法を採用して測定した場合
- TCAは、そのままの数値を記入してください。
- TTCは、トリクロロエタノール (TCE)の数値に1.1を乗じた数値に TCAの数値を加えた数値、すなわちTTC=TCA+TCE×1.1として計算した値を記入してください。
 - (2) 測定値記入欄の●は小数点です。小数点以下のマスも必ず埋めてくださ 、
- (3) 測定方法コード欄の記入は、9ページに掲載の測定方法コード表からそれぞれの調査項目毎に測定方法のコード番号を選んで記入してください。
- (4) 測定施設区分欄は、自施設で測定した項目は「1・自」を○で囲み外部の衛生検査所に測定を委託した場合は「2・外部」を○で囲んでくだ。
- (5) 自施設で測定しない項目については、「外部委託先施設名」及び「外部施設コード番号が不明の場合記入」欄に、実際に測定を実施した施設を10ページに掲載の外部施設一覧表よりコード番号を選んで記入してください。その際施設名等の記入は必要ありません。
- (6) 外部施設一覧表に測定委託先施設名が掲載されていない場合は、外部

委託先施設名及び所在地を記入してください。

(7) B参加施設において、委託先の登録衛生検査所が全衛連精度管理調査に参加していない場合は、当該登録衛生検査所に試料が送付されていないため、測定結果の照会が出来ませんのでご注意ください。照会された測定値の値が、必ず全衛連の精度管理調査に参加している登録衛生検査所の測定値であることと、当該登録衛生検査所の施設コード番号を外部施設一覧表で確認して下さい。

【尿中フェニルグリオキシル酸測定に関する調査票(I)について】

- (1) 調査票はすべての参加施設に送付されます。参加施設が測定結果を記入して、全参加施設が全衛連に原本を提出してください。
- (2) 調査内容は、調査試料の受取、保管、測定委託等の過程についてのものです。評価の対象とはなりませんが、実態をそのまま記入してください。

【尿中フェニルグリオキシル酸受託測定に関する調査票(II)について】

- (1) 調査票はすべての参加施設に送付されます。フェニルグリオキシル酸量の測定を外部登録衛生検査所等に依頼する際には、調査票上段の記入欄に、貴施設の施設コード番号および施設名を記入してフェニルグリオキシル酸試料に添えて、当該登録衛生検査所に送付してください。
- (2) 「調査票 (II)」の提出は、「調査票 (I)」と異なり、測定委託先の登録衛生検査所を経由して全衛連に提出するよう依頼してください。
- (3) A参加施設で、フェニルグリオキシル酸を自施設で測定している場合は 「調査票(II)」の提出は不要です。

【A参加施設のみに送付する調査票(その2)について】

- (1) 自施設で測定を実施した調査項目のみ記入して、全衛連に提出してください。
 - (2) 「調査票(その2)」は「フレームレス原子吸光法」、「ガスクロマトグラフ法」、「破体クロマトグラフ法」、「吸光光度法・その他」、「GC-MS法(ガスクロマトグラフ質量分析)」、「ICP-AES法・ICP-MS法」の6種類あります。測定法により記入する用紙が異なりますので、必ず該当する測定方法の調査票に記入してください。
- (3) 同じ測定方法で複数の項目を測定した場合は、該当する測定方法の調査票をコピーして、測定項目ごとに作成してください。その場合、測定

項目欄の核当する測定項目(ALA・HA、・・)に \bigcirc を付してください。 (4) 記入欄で回答を選択する場合は、核当する番号に \bigcirc を付してください。 カッコ内には文字、または数字を記入してください。

【プロセス調査票(その3)について】

A参加施設及びB参加施設ともに提出が必要です。

令和5年度の実績を元に記入してください。

【調査票の提出期限について】

参加施設毎に必要な各調査票は、令和6年11月22日(金)までに必ず原本を全衛連まで提出してください。

※ 都合によってFAXで報告した場合も、必ず原本を提出してください。

問合せ先 東京都港区芝4-11-5 田町ハラビル5階	TEI 03-5443-5034 FAV 03-5449-5037
調査票送付先 〒108-0014	

令和6年度(第38回) 労働衛生検査精度管理調査 調査票(その1) 施設コード 提出日 令和 6年 月 \Box 施設名称 所在地 本調査票の 職 名 作成責任者 氏 名 電話 結 果 測 定 測定方法 測定施設 外部施設 外部施設コード番号が不明の場合 試料 1 試料 5 試料 6 項 試料 2 試料 3 試料 4 コード 区分 コード 外部委託先施設名と所在地を記入 a 血中鉛量 1・自 (Pb-B) (μg/dL) 2 委託 b 尿中デルタアミノレブリン酸量 1・自 з-(ALA) 2 外部 (mg/L) c尿中メチル馬尿酸量 1・自 (MHA) 2 外部 d 尿中馬尿酸量 1・自 4-(g/L)2 外部 (HA) e 尿中2,5ヘキサンジオン量 1・自 (HD) 2 外部 (mg/L) f尿中総三塩化物量 1-自 5-(TTC) (mg/L) 2 外部 g 尿中トリクロロ酢酸量 1・自 (TCA) 2 外部 (mg/L) h 尿中マンデル酸量 1・自 6-(MA) (g/L) 2 外部 i 尿中ハーメチルホルムアミド 1・自 (NMF) (mg/L) 2.外部 記入上の注意: 調査票記入要領を読み、間違いのないよう記入してください。 ①測定値記入欄の●は小数点です。小数点以下のマスも必ず埋めてください。 ②「測定方法コード」欄の記入は、別紙「測定方法コード表」から、それぞれの項目の該当する測定方法コード番号を記入してください。 ②川測定方法コート 1欄の記入は、別紙・測定方法コート表別から、それぞれの項目の該当する測定方法コート番号を記入してください。 ③川測定施設区分」欄は、自施設で測定した項目は「1・自」に、測定を外部に委託した場合は「2・外部」に〇印を付してください。 ④自施設で測定しない項目については、実際に測定を実施した外部施設と別紙「外部施設コード表」から選んで、該当するコード番号を記入してください。その際施設名等の記入は必要ありません。 ⑤別紙「外部施設コード表」に 記載のない場合は、、外部委託先の施設名及び所在地を記入してください。 ⑤自施設で測定した項目については、「調査票その2(1~6)」にも、必要事項を記入して提出してください。 調査票は、必ず原本を提出してください 調査票は、必ず原本を提出してください。

尿中フェニルグリオキシル酸測定に関する調査票

各位 令和6年度 第38回労働衛生検査精度管理調査参加施設

尿中フェニルグリオキシル酸の測定に関する調査票 (I)は、精度管理調査に参加するすべての施設 が必要事項を記入して、全衛連に提出してください。

いか女争伐でむへして、土用用に佐山してくたらい。						
が 必女事項を記入して	施設コード番号	施設名	住所	担当部署	担当者	電話番号

※ 全衛連からは冷蔵保存で発送 到着日時と受領した試料の状態について

は本	(2★)	受領日時	令和 6年	皿	ш	十二		午後			
	7	試料の状態				イ脈	漏れ、	破損の有無			
-	冷凍状態	(試料が凍っている)	1,4)		漏れ		_	1 26 1	N	2 なし	
2	冷蔵状態	(試料の温度は冷たい)	冷たい)		破損		-	1 26 1	N	2 なし	
က	常温(試	(試料の温度は室温程度)	程度)		その他) :					^

試料の測定について (どちらか 🛭 をして記入)

	試料測定日	定日	华	令和 6年	町			
□ 自施設測定	測定す	測定までの保存状況	-	沙河	2 冷蔵	強	明に	
	測定方法	7法	1 T(₹An-G	2 LC-N	IS法	1 LC-UV法 2 LC-MS法 3 その他(^
□ 外部委託測定								
外部施設コード 委託先施設名								
試料受渡日	令和	6年 月	ш					
受渡までの保存	-	冷凍	2	冷蔵	3	ә		
受渡方法	-	委託側が届ける	8	受託側が回収	回収 3		郵送または宅配等	
受渡記録	-	中	8	無				
								l

三 測定結果

試料測定日	結果受領日	四十フ・ニー	デャイェール グリオキシル酸量
令和6年	令和6年	試料 A	
町	月		(T/S)
田 ※必ず	В	試料 B	•
委託先に確認してください。			[(g/L)

📕 公益社団法人 全国労働衛生団体連合会

各位 **令和 6 年度第38回労働衛生検査精度管理調査参加施設**

第38回労働衛生検査精度管理調査に係るフェニルグリオキシル酸試料の測定を外部検査施設に委託する場合は、下欄に貴施設名を記入の上、<u>この調査票を試料と一緒に当該検査施設にお渡しください。</u>※調査票(II)は、検査施設から全衛連に提出していただきます。

施設名

施設コード

Ξ 登録衛生検査所等受託検査施設(実際に測定を行う施設)各位 尿中フェニルグリオキシル酸受託測定に関する調査票

全衛連労働衛生検査構度管理調査に係るフェニルグリオキシル酸試料の測定を健診施設から受託した場合は、測定値と測定日時を委託元へ報告し、本調査票は<u>必要事項を記入の上、全衛連へ提出</u>してください。

【受託施設記入欄】

(記) 名		外部施設コード番号					卟
-------	--	-----------	--	--	--	--	---

I フェニルグリオキシル酸試料の受領の状況

	試料受領日時	4	令和 6年 月	Ш			
	受領方法	_	委託側が届ける	N	受託側が回収	က	郵送または宅配等
	受領記録	٦	有	2	無		
Ħ	受領時の試料の状態につ	12					

受領時の試料の状態について

ı	1								
L		ア 受領時の試料の状態	7	"	漏れ、	破損の有無			
	-	冷凍状態 (試料が凍っている)	漏れ		-	1 あり	0	2 なし	
	8	冷蔵状態(試料の温度は冷たい)	破損		-	1 あり	7	2 なし	
	က	常温(試料の温度は室温程度)	その他)			(
Ħ	iX	受領後測定までの試料の保存について							

保存状態

頭

က

沙戰 Ø

'	Ⅳ 試料の測定について					
	測定方法	1 LC	1 LC-UV法		2 LC-MS法	3 その他(
	测定日	令和	令和 6年	田	В	
	測定結果の報告日	令和	令和 6年	田	В	
			試料 A		試料 B	
	尿中フェニルグリオキシル酸量 (PGA)	で酸量		(g/L)		(g/L)

公益社団法人 全国労働衛生団体連合会

エ

Ħ

調査票(その3) 第38回労働衛生検査精度管理 プロセス調査票 全衛連

佑	Þ	É.
誸	11. 世界	とすく
摇	8	3
	. F	₩
	<u> </u>	ם
	٠ ۲	
ا بر	抵	
施設コ-	参加方	たはBに○
摇	柳	A±7

1. 鉛・有機溶剤・特定化学物質健康診断および代謝物測定実施状況

1-1 代謝物等の測定実施件数(A参加施設対象 令和5年度実績)

- ◆ A参加施設(自施設で登録衛生検査所を併設している施設及び衛生検査所)のみが回答して下さい。
- ◆ 自施設で測定を行っている物質は、自施設()に○印を記入し、今和5年度中に測定した件数を記入してください。 ◆ 重複をさけるために自施設で測定を行わず外部の登録衛生検査所に測定依頼している物質は、委託 () に○印を記入

して測定件数は空欄としてください。

		#	世	世	华	世	世	世	华	世	#	华	#	世	世	世	#	世
	測定件数																	
鞭																		
展	泰託		((((((()	^	(((
和 5 年	自施設	<u> </u>	0	0) (0) (0) () ()() () (~) ()(
代謝物測定実施件数 (令 4	测定物質名	2 中 国	尿 中 デルタアミノレブリン酸 (赤血球中 プロトポルフィリン	原中 メチル馬尿酸 (原中 馬尿酸 (原中 2,5-ヘキサンジオン	阪中 総三 植 化 珍	尿中トリクロロ酢酸	尿中マンデル酸	原 中 ハ-メチルホルムアミド	尿中 マンデル酸 + フェニルグリオキシル酸 (原中 オルトートルイジン (原 中 3,3'-ジクロロ-4,4'-ジアミノ ジフェニルメタン (MOCA) ⁽	尿 中メチルイソプチルケトン (MIBK)	原中 アンチモン	血清インジウム	血中カドミウム (

調査票(その3)

1-2 鉛・有機溶剤・特定化学物質の特殊健康診断実施状況(令和5年度実績)

- ◆標記物質について特殊健康診断を実施している施設は、実施()に○印を記入して実施した特殊健康診断実施件数を記入して

 - ◆ 標記物質の特殊健康診断を自施設で実施していない施設は、実施()にX印を記入し、実施件数は空間となります。 ◆ 特殊健康診断実施件数については、重複を避けるために自施設で結果報告を行った件数だけを記入してください。 ◆ ※ 他機関より健診を受託し実施した件数は、委託元の機関が報告するものとして差し引いた件数を記入してください。

特殊	健康	診断実施件数(令和	5 年 度 実 績)	
特殊健康診断対象物質	実施	特殊健康診断実施件 特殊健康	診断対象物質 実施 特殊健康診断実施件	施件
海		(A) N,N - ジメチ	件 N.N・ジメチルホルムアミド()	#
サントン	0	年 スチレン		#
トルエン		年 オルト - トルイジン	()	#
ノルマルヘキサン		年 3.31-ジクロロ-4,41-ジアミノ かフェニルメタン	·пп-4,4'-ジアミノ ジフェニルメタン (MOCA) ()	世
1・1・1 - トリクロロエタン	()	件 メチルイソブラ	件 メチルイソブチルケトン (MIBK) ()	#
トリクロロエチレン		件 三酸化二アンチモン	()	#
テトラクロロエチレン		4 インジウム		世
エチルベンゼン	()	4 7 6 5 7 4	()	世

2. 検体の採取・受領・保存状況

2-1 特殊健康診断の代謝物採取時期の事前指導・説明

- ◆ 該当する a~f に○をして下さい。 ◆ 複数回答可です。その他は具体的に記述してください。
- a. 健康診断実施前に尿採取時期について説明はしていない。
- d. 健康診断実施前に尿採取時期に関する注意事項を記載した文書によって受診者を含め全員に周知させている。 6. 健康診断実施前に尿採取時期に関する注意事項を記載した文書によって担当者に周知させている。 b. 健康診断実施前に尿採取時期に関する注意事項を事業場担当者に口頭で説明する。
- f 特殊健康診断を実施していない。 (該当する場合は次ページ設問2-2~2-3の回答は必要ありません) その他周知方法

υ

調査票(その3)

2-2 特殊健康診断代謝物等の採取時期(時間)

- ◆衛生検査所および数当項目の特殊健康診断を実施していない施設では、記入の必要はありません。◆該当する()に○印を記入してください。◆その他()内記入は、具体的に記述してください。

でかしましている。(こと) はいましている。(こと) はいましている。<!--</th--><th>i chang</th><th>7 1</th><th></th><th>0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th>	i chang	7 1		0								
採取対象物質		御親	作業開始前	開報	湿	盐	作業終了時	祖上	運転作 後半の作 当該作業	理称作業した 後半の作業日の 当該作業終ア時	その他 (具体的に記述)	t 記述)
血中鉛			Ų	^	\cup	_	\cup		$\overline{}$	^	J	^
尿中 デルタアミノレブリン酸		$\overline{}$	_	~	J	_	J	^	J	^)	^
赤血球中 プロトポルフィリン		^	Ü	_	J	~	J	^	J	^)	^
尿中メチル馬尿酸		^	_	_	J	^	J	^	J	^		^
尿中馬尿酸		_	J	_	Ú	^	J	^	J	^	J	^
原中 2,5-ヘキサンジオン		^	_	~	J	_	<u> </u>	^	<u> </u>	^		_
尿中総三 植 化 物		_	J	_	J	~	J	^	J	^)	^
尿中トリクロロ酢酸		^	Ü	~	Ú	^	J	^	J	^)	^
尿中マンデル酸		^	_	~	J	^	J	^	J	^)	^
尿中 N-メチルホルムアミド		^	_	_	J	_	J	_	J	^)	
尿中 マンデル酸+ フェニルグリオキシル酸		^	_	_	J	^	J	^	J	^)	^
原中 オルト-トルイジン		_	Ü	^	J	^	J	^	J	^)	^
尿中3,3'-ジクロロ-4,4'-ジアミ /		_	J	~	J	^	J	^	J	^)	^
尿中メチルイソプチルケトン (MIBK)		$\overline{}$	_	~	J	_	J	^	J	^)	
尿中 アンチモン	Ü	^	Ü	(v	^)))	()	(
血清インジウム	U	^	J))	()))))	_
血中カドミウム		_	J	_	Ú	^	J	^	J	^	J	^

3. 検体の受領・保存

3-1 検査依頼での検査受託機関での血液・尿検体の受領・保存(A 参加施設対象)

調査票(その3)

- ◆ 登録衛生検査所が、健康診断施設からの検体受領・保存の取扱いを想定しています。 ◆ 複数回答の場合はその理由をd.()に記入してください。 ◆ c.またはd.()には、その他の対応などを具体的に記述してください。

)	و ۱۷ ه)		
			p ⊯	として下さ	· p		
			C. 第三者機関(搬送業者)利用 d. (について該当する a~d に○を	C. 可搬·設置冷蔵庫		
°c	b. 検査受託機関ではない	a∼d に○をしてください。	b. 検査施設集配担当者 C.	検体の受領から検査施設まで時間・距離がある場合の温度管理について該当する a~d に○をして下さい。	b. 保冷剤使用ボックス C.	検体の授受の記録について該当する a~ c に○をして下さい。	b. ₺ し
他施設から検査を受託している。	a. 検査受託機関である b.	検体の受領について該当する a~d に○をしてください。	a. 検査担当者直接 b.	検体の受領から検査施設まで時	a. 常 温 B	検体の授受の記録について該当	а. क и b.

4. 精度管理実施状況 (A、B 参加施設対象)

4-1 標準作業書・個人情報管理・廃棄物管理状況

◆自施設において、有・無どちらか該当するものに○をしてください。

廃棄物、特に感染性廃棄物処理の管理体制の	有・無
個人情報管理体制の有無	有・無
標準作業書の有無	有・無

)有無

4-2 (精度管理体制) 検体検査の精度の確保に係わる責任者の選定

- ◆ 選任の有・無に○を付けてください。 ◆ 職位・職制は、a: 所長・局長クラス、b: 部長・次長クラス、c: 課長・補佐クラス、d: その他、とします。 該当する a~d のいずれかに○をしてください。

*	р	
(世) 記 (単)	c.	
難位。	p.	
	a.	
重	検査技師 C. その他	
難	b. 臨床検	
	a. 医師	
選出	有・無	

4-3 教育研修 (過去3年間検体検査に係わる研修・講習会受講の実績)

- ◆それぞれ主催された研修・講習会を受講した受講者()に○印を記入してください。複数回答可。◆記載された以外の団体の会を受講した場合は、主催者名を記入し、受講者()に○日を記入してください。

	L			脚離		
主催	精度	精度管理	技術管理	測定·分析	検体搬送	渉外(営業)
	丰区	責任者	責任者	担当者	担当者	担当者
全国労働衛生団体連合会	<u> </u>	^	· ·	<u> </u>	· ·	<u> </u>
日本医師会	~	~	()	· ·	0	0
臨床衛生検査技師会	~	^	()	· ·	()	0
日本衛生検査所協会))	()	()	()	()
日本総合健診医学会))	()	()	()	()
自施設內研修·講習会))	()	()	()	()
その他())	()	()	()	()

C. 第三者機関(搬送業者)利用 d.

ō.

C. 可搬·設置冷蔵庫

検体の授受の記録について該当する a~c に○をして下さい。

<u>.</u>

b 保冷剤使用ボックス

™ g o

0

C. 健診実施と別日程

測定場所までの検体搬送者について該当する a~d に○をして下さい.

b. 健診実施時採取

a. 事前採取健診時回収 自施設健診スタッフ 则

b. 測定委託先担当者に依頼

検体搬送時の温度管理について該当する a~d に○をし

◆登録衛生検査所および特殊健康診断を実施していない施設では、記入の必要はありません。◆巡回韓診時または施設内健診での検体採取・保存の取扱いを想定しています。◆複数回答の場合その理由をd()に記入してください。

c.またはd.()には、その他の対応などを具体的に記述してください。 代謝物検体の採取について該当する a~d に○をして下さい。

2-3 健康診断現場での血液・尿検体の採取・保存(A 参加施設対象)

調査票(その3)

4-4 内部精度管理(精度管理試料について)

- ◆参加方法 A参加店設のみ回答して下さい。(※ B参加店設は回答の必要ありませんのでご注意ください。)◆自店設で選定を行っている物質について回答してください。(選定実施の有無()に○印を記入してください。)◆ 選定実施()に×印を記入した場合は、続く質問の回答職は空職になります。◆ その他()には、○印または数値、品名、を記入してください。

-{	温温		精度管理	精度管理試料 插入網度		**	精度管理	試弊につ	21		使用濃厚	極
河元物画	推開の	, 日単位 ごと	定検査	定検体ごと	その他	自家製	市販品	メーカ・	7—名	1濃度	2濃度	3濃度以上
場 中 期)()	0	()	0	<u> </u>	()	\cup	^	()	<u> </u>	()
尿 中デルタアミノレブリン酸		()	()	()	()	()	())	(()	()	()
赤血球中プロトポルフィリン		()(()	0	<u> </u>	<u> </u>	<u> </u>	J	^	<u> </u>	()	()
尿 中 メチル馬尿酸)()	()	_	0	()	()	J	^		()(()
尿中馬尿酸)(J)()	<u> </u>	()	()	Ú	^		()(()
原 中 2,5-ヘキサンジオン)()	()	_	0	()	()	J	^		()(()
阪中然三插ん物)()	()	_	0	()	()	J	^)()	()
尿中トリクロロ酢酸)()	()	_	0	()	()	J	^)()	()
尿中マンデル酸)()	()	_	0	()	()	J	^		()(()
尿 中 <i>N-メチルホルムアミド</i>)()	()	()	<u> </u>	()	()	J	^)()	()
尿中マンデル酸+フェニルグリオキシル酸		()(()	0	<u> </u>	<u> </u>	()	J	^		()(()
原中 オルト - トルイジン)()	()	()	<u> </u>	0	()	J	^	0	0	()
尿中3,3'-ジクロロ-4,4'-ジアミノジフェニルメタン		()(()	()	<u> </u>	0	()	J	^	(<u>)</u>	0	()
尿 中 メチルイソブチルケトン		()(()	()	<u> </u>	()	<u> </u>	J	^	<u> </u>	0	()
尿 中 アンチモン	J)()	()	()	<u> </u>	0	()	J	^	0	()	()
血 清インジウム		()(()	J)(0	()	J	^	()	()	()
血 中カドミウム)()	()	()	<u> </u>	<u> </u>	· ·	J	^	0	()	()

4-5 外部精度管理調査への参加

◆ 全衛連以外の外部精度管理調査に参加または参加予定の精度管理調査の主催者名()に○印を記入してください。

◆ 1877. \ \ \ 1877. \ \ \ 1877. \ \ \ 1877. \ \ \ 1877. \ \ \ 1877. \ \ \ \ 1877. \ \ \ \ \ 1877. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4	型の *	()
Í	C	L	()
	- 中国日本	都通が来げ	()
	日本総合	健診医学会	()
5	日本衛生	検査所協会	()
	日本臨床衛生	検査技師会	()
1	- - - - - -	14 H	()

調査票(その3)

5. 検査委託先との契約状況 (A、B 参加参加対象)

5-1 委託先との契約、管理体制把握◆その他()には具体的な記述をしてください。複数回答可。

	((((
	d. (%،) ' p		d. () ' P
~d に○をしてください。	C. 10日以上	委託先の個人情報管理について主に確認する事項について該当する a~ d に○をしてください。	c. ISO 27001	委託先の品質管理について主に確認する事項について該当する a~ c に○をしてください。	c. CAP	~ c に○をしてください。	c. 渉外(営業)からの説明 d.
委託先との検査所要日数取り決めについて該当する a~d に○をしてください。	b. 7∼10⊞	管理について主に確認する事項につ	b. JISQ 15001	こついて主に確認する事項について	b. ISO 15189	委託先の管理体制の情報入手方法について該当する a~c に○をしてください。	媒体 b. パンフレット等紙媒体
委託先との検査所	a. ∼7日以内	委託先の個人情報	a. P ₹−⅓	委託先の品質管理(a. ISO 9001	委託先の管理体制の	a. ホームページ等電子媒体

5-2 委託先の精度管理	[管理確認
◆登録衛生検査所に確認すべき事項。	認すべき事項。
最終委託先の組織、	職員構成・構造設備・業務内容・内部精度管理実施状況・外部精度管理実施状況・検査案内書の確認をした?
a. LTN3	b. LTいない
苦情・問い合わせ€	苦情・問い合わせ等検査に係わる対応についての体制を確認した?
a. LTN3	b. していない

5-3 委託先の精度の監視の実施

◆「同一検体プラインド挿入」とは、同じ検体を2分割し、2人分の検体として測定を依頼することをいいます。◆「その他方法」には、同一検体プラインド挿入について二つの検査機関に測定を依頼する方法等があります。

			C. その他()		C. 年1回 d. その他 (
	b. していない		a. 同一検体プラインド挿入 b. 既知試料プラインド挿入		b. 半年1回
米店の台無にしいて	a. Lている	実施方法について	a. 同一検体ブライン	実施頻度について	a. A 1 D

ご協力いただきありがとうございます。

<u>測定方法コード表</u> (令和6年度)

测定項目	コード番号	測定方法
	1-1	フレームレス原子吸光法
血中鉛 [Pb-B]	1-3	ICP-MS 法
	1–9	その街
	3–3	緒方-友国法
尿中デルタアミノレブリン酸 [ALA]	3-5	液体クロマトグラフ法
	9-8	その他
	4—1	液体クロマトグラフ法
	4-3	ガスクロマトグラフ法
尿中馬尿酸 [HA]	4-4	GC-MS法
尿中メチル馬尿酸 [MHA]	4-5	LC-MS⁄±
	4-6	酵素法
	4-9	その他
	8—1	ガスクロマトグラフ法
尿中2,5-ヘキサンジオン [HD]	8-2	GC-MS 法
	6-8	その他
	5—1	ガスクロマトグラフ法
尿中総三塩化物 [TTC]	5-2	吸光光度法
尿中トリクロロ酢酸 [TCA]	5-3	GC-MS 法
	6-9	その街
	6—1	液体クロマトグラフ法
CVSVJ 篇 = 们、个子园	6-3	ガスクロマトグラフ法
条子、ノーン製 LivitA.)	6-4	LC-MS法
	6-9	その他
	9—1	ガスクロマトグラフ法
尿中 <i>N-メ</i> チルホルムア≥ビ[NMF]	9-2	GC-MS法
	6-6	その他
	P-1	液体クロマトグラフ法
「VぴG」発言・ベヤオニグニー・C子団	P-3	ガスクロマトグラフ法
ベナノナー・アン・クイン・一般(10分)	P-4	LC-MS法
	6-d	その他

令和 6 年度精度管理調査外部施設一覧表

外部施設	施設各	外部施設	施設名
1 600	(株)「SIメディエンス中央総合ラボラドリー	140	(株)エスアールエルセントラルラボラドリー
900	(株)ののでは、大学は大学の一人体のでは、大学)の企画を対するのでは、	144	(ボ/ーズ) パージュン・ソン・ソン・ソン・ソン・ソーズ (株)エスアールエル 静田 小ボルビー
800	(株) 木門・ドン・ドリアの) (株) (株) (株) (株) (株)	146	(ボ/ナベ) ゲーン・中国ノベン・ にまれ 下 医 でんかん アーン・ボール 一番 一番 かんしん 一端 木 市 医 値 全 権 を ナンター
600	(株)エスアールエル 関西ラボラドリー	151	(株)北九州小倉医師会北九州中央臨床検査センター
012	(一財)東京保健会 病体生理研究所	154	板橋中央臨床検査研究所
024	(一社)京都微生物研究所	160	上尾中央臨床検査研究所
029	(株)大阪血清微生物研究所	191	(株)ファルコバイオシステムズ岡山研究所
030	中央労働災害防止協会 大阪労働衛生総合センター	162	(株)近畿エコサイエンス
035	(一財)京都工場保健会	165	SRL Advanced Lab. FMA
980	(公財)神奈川県予防医学協会	167	札幌臨床検査センター(株)
041	(株)エスアールエルMUQSラボラドリー	168	(株)エスアールエル 宇都宮ラボラトリー
020	(株)エスアールエル練馬ラボラトリー	169	(株)ファルコバイオシステムズ東海中央研究所
052	(株)第一岸本臨床検査センター	171	(株)日研医学
054	(株)愛媛臨検	172	(株)メディック愛知ラボ
055	(株)エスアールエル 相模原ラボラトリー	174	(株)江東微生物研究所 東北中央研究所
057	(株)エスアールエル 愛知ラボラトリー	175	(株)戸田中央臨床検査研究所
058	(株)四国中検	176	(株)武蔵臨床検査所
090	(株)中央微生物検査所	185	(公益社団法人)宮城県医師会健康センター
062	(株)昭和メディカルサイエンス 総合研究所	190	(株)アルプ
065	(株)岡山医学検査センター	193	(株)なのしセントラルラボラトリーズ
690	(株)協同医学研究所	197	(株)LSIメディエンス関西
073	(有)久留米臨床検査センター	198	(株)LSIメディエンス神戸
075	(株)サンリン	199	(株)LSIメディエンス宮城
080	(公財)中国労働衛生協会 福山本部	200	(株)保健科学西日本総合ラボラトリー
081	(株)北信臨床	201	(株)SRL関西院内検査部音羽病院
083	(株)ナゴヤ医学学術センター	202	(株)エスアールエル世田谷ラボラトリー
085	(株)日本医学臨床検査研究所	203	(株)ファルコバイオシステムズ大阪
087	(株)ファルコバイオシステムズ東京	204	(株)ファルコバイオシステムズ神戸
088	(一社)半田市医師会 健康管理センター	205	(株)日本医学臨床検査研究所関西ラボ
680	(株)ビー・エム・エル BML北陸	206	音羽病院SRL検査室
060	(株)ファルコバイオシステムズ総合研究所		
094	(株)メディック堺		
095	(株)CIS熊本中央研究所		
100	(株)保健科学 東日本		
102	日本医学(株)		
109	(株)シー・アール・シー		
110	八戸市医師会臨床検査センター		
111	(株)江東微生物研究所 中央研究所つくば		
112	(株)福山臨床検査センター		
122	(株)近畿予防医学研究所		
126	(株)メディック滋賀ラボ		
127	(株)メディック岐阜ラボ	666	令和4年度の実績で掲載しております。
128	(株)メディック長野ラボ		新規及び施設名称が変更になっている場合がありますの
129	(株)メディック静岡ラボ		で、コード表に無い受託施設または追加および不明の場
134	(社福)聖隷健康診断センター		合は、コード番号999を調査票にご記入ください。
136	(株)ビー・エム・エル BML 山形		
137	(株)京浜予防医学研究所		